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Abstract. The Racah formula for the SU(2) g-coefficient is usually considered as a pure
combinatorial formula. A physical interpretation is found for this formula and, more generally,
for combinatorial formulae of then3; coefficients. Angular momenta are associated with
the p, points of the finite projective geometry P&@) where triangular conditions appear as
collinearities of points. A 8-j coefficient corresponds to a subset of R&) so that some

of the p, angular momenta are hidden for the-3. The combinatorial formula of then3; is
interpreted as the summation over these hidden angular momenta of a highly symmetric ‘full
pn-J symbol’.

1. Introduction

Many links between geometry and the theory of angular momentum in quantum mechanics
have long been known (Wigner [1], Fano and Racah [2], Biedenharn and Louck [3]). When
coupling two angular momenta and j, to form j3, we often think of the triplet {, j», j3)

as a triangle with sides of lengtf, j, and jz and speak ofriangular condition(euclidian
geometry). In theangular momentum graphistroduced by Jucys (whose name is also
spelled Yutsis), Levinson and Vanagas [4, 5] the momenta are associated with edges and
triangular conditions with vertices (graph theory). The association of momenta to faces of
tetrahedra has been considered more recently by Barbieri [6] (simplicial geometry). In this
paper momenta will be associated with points and triangular conditions with collinearities
of points (projective geometry).

In Fano and Racah [2], the ﬁcoefficient{ ﬁ 52 52
quadrilateral (figure 1), where the four triangular conditions correspond to the four lines.
This description has been used to interpret various relations betwgeéfficients [2, 3].
Robinson [7], remarking that we are really interested in only three points of each line,
introduced the finite projective geometries RG).

The finite projective space PG(2), also known as the Fano plane (figure 2), contains
seven points and seven lines. Each line contains exactly three points (one line is depicted
as a circle in figure 2). PG(2) is constructed from the three-dimensional vector space
]Fg over the two-element fiel#, = {0, 1}. The spacéh“g is formed of eight elements of
coordinates X, i, v) in the standard basis which we code by the binary number. The
seven non-zero elementsIef are identified with the points of PG(2). Given two different
pointse ande’ of PG(2 2), there is exactly one line passing through these points and the
third pointe” on the line corresponds to relatient- ¢’ + ¢” = 0 in F3. By placing the

} is depicted by a complete
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Figure 1. The 6+ coefficient in projective geometry. Figure 2. The Fano plane PG(2) of momenta for the
6-j.

quadrilateral (figure 1) in figure 2, Robinson interpreted six of the seven points of P\G(2
as a 65 symbol.

In this paper we present an interpretation of thg¢ 6eefficient in terms ofall seven
points of PG(22). The momenta of the §-are associated with six points of PGQ)
as in Robinson and hidden momentuns associated with the seventh point (point 111
in figure 2), thus forming a set of seven momenta anflila7-J symbol The hidden
momentum can take any value satisfying the triangular conditions represented by the three
lines passing through point 111. The dual projective space R&(2s a second Fano
plane. Points in one Fano plane are in duality relation with lines in the other Fano plane,
collinear points corresponding to concurrent lines. We associate one non-negative integer
to each of the seven points of PG(2) that we call theco-momentunof that point. The
seven co-momenta are discrete Fourier transforms of the seven momenta. We define the
value of the full 7J symbol as a simple expression which is invariant in all 7! permutations
of the co-momenta. The Racah formula for thg @oefficient is then interpreted as the
summation of the full 7 symbol over all values of the hidden momentum.

We have obtained similar results for the general j3coefficient, summarized by the
diagram:

duality
[ co-moment3 — (1)

| hidden momenta

As another example, the geometry of thg @oefficient is the three-dimensional 15-
point space PG(2) (figure 3). Adding six hidden momenta to thej9we define a full
15-J symbol with 15! permutational symmetries in the space of co-momenta. The value of
the 9-j is obtained by a summation over the six hidden momenta of this full ymbol
multiplied by a phase factor.

We begin by defining the i3 coefficient from its angular momentum graph
(section 2). The cycles aff (section 3) are used to define the spacesnP&) (section 4)
and PG¢, 2) (section 5). By using the combinatorial formula in Labarthe [8] we define the
co-momenta (section 6) and the ful),-J symbol and derive our main result (section 7).
We then examine examples and show how to obtain sum rules forthye c@efficients
(section 8). To conclude the paper we consider the interpretation of the, full symbol
(section 9).
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Figure 3. The PG(32) geometry of the 9 coefficient. Seven lines pass through each of the
15 points, but only some of the 35 lines are represented. One of the fifteen 2-subspaces (Fano
planes) is shaded.

2. Angular momentum graphs

A 3n-j coefficient is defined by its angular momentum grapl{see [9-12]). The graph
defines an invariant of SU(2) constructed from rBomenta which label the edge6. is a
trivalent graph (three edges meet at each of the@tices).

The 3i-j coefficient ¢ = 1) in figure 4 is thed coefficient so named from its shape.
The graph defines the value of thecoefficient as

R JioJ2 3 __\Jji—mi+ja—ma+jz—m3 J1 J2 J3
Oirjos _mlgm(’"l - m3>( ) (_ml o —mg)' 2
The left vertex in figure 4 corresponds to a coupling of the three angular monjgnta
J2: ja and to the first 3 symbol in equation (2). The: sign at a vertex ofG fixes the
cyclic order of the momenta in the 8symbol in equation (2). The way the projection
numberm of momentum; and the phase factor appear in equation (2)(-as’ ---) and

(=) (- _{n -+ +), is fixed by the arrow on edge Changing the sign of a verte¥( jo, j3)

or the direction of an edgg multiplies the &-;j by (—)/1+72%js or (—)?/ respectively. The
value of; is 1 when the set of momentay( j», j3) satisfies thdriangular conditions
namely

1j2J3

it Jj2—J3 2+ j3—J1 and JB3+ji—j2 3

are non-negative integers, and 0 otherwise.
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Figure 6. The 9+ coefficient. Figure 7. The 6+’ coefficient.

The value of the generaln3; coefficient is defined similarly by its graph. The;6-
coefficient{ j,l 5,2 53} is represented by the tetrahedron graph (figure 5) and the 9-
4 Js Js
i J2 J3
coefficienty js js Jes ¢ is given by figure 6.
J1 Js Jo _ i .
We shall also admit as a:3j (n = 2) the6-j of second kindn figure 7, which we call
6-j' and denote
i1 jo Ja ! (_)j1+jz+j4+j5
{ i e js} = W911151591214155j3j6~ (4)

3. The edge space and its cycle subspace

Let E be the set of the edges of gragh For the 65 coefficient the set of the edges is
E = {j1, jo, ..., J&}» Where we designate the edges by the same symbol as the momenta.
Theedge spac€ of the graph is the vector space over the two-element figldf functions
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Figure 8. The non-zero cycles of the p-coefficient.

E — T,. The support of a functiorf € £ is the subset C E of the edges € E such
that f(e) = 1. We shall not distinguish between a function and its support. The sum of
two edge subsets, F’ C E is then their symmetric differenc@ \ F') U (F'\ F).

A cycle of graph G is a subset of edges which form any numbercotuits (for a
formal definition see for example Diestel [13]). For the &oefficient, there are & 23
cycles, the seven cycles represented in figure 8 and the empty see(theyclg. Figure 9
gives the seven non-zero cycles of thg’sf figure 7. All non-zero cycles consist of one
circuit each, excepteds which is formed of two circuits. Given two cyclesg, ¢, and
scalarsiy, Ap € [y, the linear combinatioriie; + Ases is a cycle: the cycles form the
cycle-subspacé€ of £. The dimension of for a graph withc componentsg vertices and
b edges i$ — a + ¢ (see Biggs [14]). For simplicity, we shall assume that thej3raph
is connectedd = 1), but the exposition that follows remains valid with> 1 components
if the coefficient is thought of as a (8 + ¢ — 1)-j’ instead of a 3-j. For example, a
composite graph of twé, though involving six angular momenta, should be considered as
a ‘9-j. For a 31-j, the cycle-subspace is of dimensien- 1 and contains’2! elements.

4. The projective space PGi*, 2)

Let us first consider the 6-coefficient. A basis ot is given by the cycless, eg, 7. We
code elementes + yeg + ze7 by the binary numbexyz (for examplee, = es + e7 is coded
by 101). We identify the seven non-zero cyctesi = 1, 2, ..., 7) of C with the Fano plane
PG(2, 2) (figure 10). Similar projective spaces have been considered for general graphs in
connection with the theory of graph colourings (see Holton and Sheenhan [15] and Tutte
[16]).

To generalize to any3; we introduce the projective space RG(2). The p, =
2'+1 _ 1 points of this space are identified with the non-zero cycles of th¢.3The k-
subspacesf PG@*, 2) are the pointsk(= 0), the lines k = 1), the planesi = 2),... and
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Figure 9. The non-zero cycles of the §-coefficient.

the hyperplanesk(= n — 1). They are projective subspaces of projective dimensijdior
example each of the, hyperplanes can be considered as a projective space PG,(2)
of 2" — 1 points.

In the evaluation of the G- coefficient we shall need to know the cycles that contain
a given edge. For example edgeof the 6-j is contained in cycles,, e3, es ande; (see
figure 8): these are the points of the Fano plane (figure 10) outside thejing,(es). Let
us now determine the cyclese C that contain a given edge € E in the general case.
Let x.(e) be the functiorC — {—1, +1} defined byyx,(e) = —1 if cycle e contains edge
and x,(e) = 1 otherwise. The functior, is a character (in this paper the word ‘character’
will mean irreducible character) of the Abelian groGp

Xa(e + €)= xa(e)xa(e) fore, e’ eC. )

The characters af are associated to the hyperplanes of #G2): x, takes the value
—1 on the points outside a hyperplameand-+1 on the points of the hyperplan¢ and at
0 (in C).

5. The projective space PGf, 2) of momenta

In the duality of projective spaces, the preceding hyperplanef PG@*, 2) is identified
with a pointa of PG, 2). Figure 2 represents PG@ for the 65. The pointiuv of
PG(2 2) corresponds to the line of PG(2) given by equation.x + ny + vz = 0 for the
points xyz in PG(2, 2). Six points of PG(22) are labelled by the momenta of thej6-
which are thussmbeddedn PG(2 2). For example point 011 of PG(2), corresponding
to line (e1, es, es) of equationy + z = 0 of PG(2Z, 2) is labelled withj;. Figures 2 and 10
have been drawn so as to make their duality apparent.
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Figure 10. The Fano plane of co-momenta PG(2). Figure 11. The Fano plane PG(2) of momenta for
the 6-'.

For the 65, we have labelled the cycles in figure 9 so that the projective space PG (2
is the same as for the B{figure 10). In the labelling of PG(2) by the momenta of the
6-j that results (figure 11), only five of the seven points are labelled with momgnéad
Jje labelling the same point (corresponding to the fact that thié i6-0 unlessjz; = jg).

When an edge: of an angular momentum graphi is anisthmus meaning that one
part of the graph can be removed by cutting this edge, the correspondings30 unless
momentuma = 0. Since an isthmus is not contained in any cycleGefthe corresponding
momentum is not embedded in RGR).

We remark that a coupling of angular momenta is represented by a line of PGgor
example (>, js, jo) form a line. This property generalizes to PGR). Indeed, letd, b, c)
be three edges coupled in the-3 coefficient. In each cycle there is an even number of
these edges, so that the corresponding characters are linked by

Xa(@)xp(@)xc(e) =1 Ve e PGp*,2) (6)

implying that the hyperplanes’, b*, ¢* associated to the characters havérman2)-subspace
in common. In the dual space PGR) this means that the corresponding pointsh( c)
are collinear.

6. The co-momenta

The combinatorial formula of then3; coefficient is based on its non-zero cycles (Labarthe
[8], where the non-zero cycles are calleldsed diagrams To each non-zero cycle is
associated a sigg = +1 computed by the following rules:

e orient all circuits ofe; in an arbitrary fashion.

e multiply the factors:

—at each vertex o#;, a factor of+1 if the cyclic order of the edges is (incoming edge,
outgoing edge, third edge) andl otherwise (figure 12).

—on each edge of;, a factor of+1 if the directions of the edge and cycle are opposite
or —1 if they are the same (figure 13).

—a factor—1 for each circuit.

Note that the value of; is independent of the orientation chosen for the circuits.
Examples for the 6 coefficient (figure 4, = —1 for the three non-zero cycles; for thej6-
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Figure 12. Vertex factor.
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Figure 13. Edge factor.

and 65’ coefficients (figures 5 and %) = 1 for all non-zero cycles.

To each set of values of momenta ina 3 we associate an arrayof these 3 values.
For example, we associate thex13 arrayx =[j1 j» Jja] to 6,5, and the 2x 3 array
x = [J.l J2 1.3} to the 64 {J.l J2 - J3 } We denote byR the space of arrays like

Ja Js Je Ja Js Je

these when the entries are integers or half-integers that satisfy the triangular conditions of
the 3-j, with {x} the value of the 3-j associated to array € R andN = {0,1,2, ...}
the set of non-negative integers.

For arrays inR, we have the usual addition and multiplication by a scalas N.
For example, in the case of thig if x =[j1 j» jslandx' =[j; Jj; Jjiz] we have
x+x'=[jp+j; j2+Jj; ja+jslandix =[Aj1 Aj2 Ajz]. Itis easy to see that if
x,x" € RandA € Nthenx+x" € R, Ax € R (R is closed under addition and multiplication
by a non-negative integer scalar).

To each non-zero cycle we associate an array iR corresponding to momenta éf
on the edges of; and zero for the remaining edges. To simplify notations, these elements
of R are denoted by the same name as the cycles. They are for the 6-

r 1 1 1 1 1 1
r 11 1 1
=P8 esla] «sfeie] o
~[559
Each element € R can be decomposed over thesearrayse; e R (i =1,2,..., p,) as
X = iliei l; e N. (8)
i=1

We call/; the co-momentunat pointe; of PG*, 2). Since the arrays are not independent
in R, decomposition (8) is not unique in general, but the number of different decompositions
is always finite because the co-momenta have to be non-negative integers.
The normalizing factotv of the 3:-;j coefficient is the product of the triangle factors
of the 2u couplings &, b, ¢):
N= [T Awe ©

(a,b,c)
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_ _ _ 1/2
Aab¢=<(a+b Alb+c—a)lc+a b)!) ‘ (10)

(@+b+c+1)!
The value of the 3-j coefficient is expressed as:

Xl=NY_ (]_[(— Dk )(H,j ll), (11)

where the sum is over the decompositions (8) afi co-momenta and whettél = """,/
For a given set of co-momenta, equation (8) gives the momenta Bbr example, for

the 6-j we have using equation (7):

= 0L+hk+Ils+17)/2

Je=U+B+I5+17)/2

J3=U+l+Is+1)/2

ja= U2+ B3+1a+1s5)/2

js=U1+13+1s1+16)/2

Jo=U1+L+1l+17)/2

(12)

We see, more generally, that the momentjnassociated to point of PG, 2) is half the
sum of the co-momenta at points in PG(2) outside the hyperplane dual kpor in terms
of characters:

dYoob fork=1,2 ..., p. (13)

xe()=-1

Let us mention that equations similar to equation (13) occur with different quantities and
different meanings in Conway (assisted by Fung) [17], where P& (@nd its dual are used

in the geometric classification of the three-dimensional lattices in terms of their Morono
cells, and in Fairlie and Ueno [18, equations (10) and (11)], where: X} (is associated

with integrable top equations. We have extended equation (13) to define momenta at all
points of PG#, 2), even those that were not momenta in thej3coefficient. So for the

6-j, we have added momentuyn at point 111 of figure 2 with value

Ji=U+ls+1+17)/2 (14)

This momentumj; satisfies the triangular relations corresponding to lines in PB(2
the sets f1, ja, j7), (2, js, j7) and (s, je, j7) are triangular if the co-momenta are non-
negative integers. This property remains true in the general setting af PG (Let @, b, ¢)
be a triplet of momenta on ling in PG, 2). Since the corresponding dual hyperplanes
a*, b*, ¢*, which have thgn — 2)-subspacel* in common, cover all PG(, 2), we have,
using equation (13),

a—i—b—c:Zli (15)

where the sum is over the points of not in 4*. This shows that: + b — ¢ € N, and
similarly b + ¢ —a € N andc + a — b € N, meaning that the set:(b, ¢) is triangular, if
the co-momenta are non-negative integers.

Introducing

Pn

—Y =l jo=0 (16)
i=1
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and denoting the character with constant value Ldwy xo, we can rewrite equation (13)
as

Pn
Je==3> x@l; fork=0,1,2,..., py. (17)
i=0

This means that the momenta are discrete Fourier transforms of the co-momenta, so that
the inverse Fourier transform of equation (13) is

1
on—1

Pn
=5 @i fori=12...p, (18)
k=1

with, for the sum of co-momenta,

Pn

1] = %ij. (19)
k=1

For example, for the 5 the inverse of equations (12) and (14) is
h=En+jtjs—Jjat+js+Jje—Jj1)/2
Lbb=(jh—Jjatjstja—Jjs+je—Jj1)/2
la=(+jr+jo—jza+ja+ js—je— j1)/2
la=(—jr—ja—Jjatjat+ js+je+j1)/2 (20)
Is=(—jp+j2tjz+ja—Jjs—Jje+Jj1)/2
le=Hn—jotjz—Jjat+Jjs—Jje+Jj1)/2
=i+ j2—Jjs—Jja—Jjs+jetj1)/2

with sum

| = (+j1+ jo+ jza+ ja+ js+ je + j7)/2 (21)

7. The formula of hidden momenta

We now interpret equation (11) by definingf@l p,-J symbol Let X be an array ofp,
angular momentg; (k = 1,2,..., p,). We associatg, with pointk in PG, 2) and the
co-momenturm; (i = 1,2,..., p,) calculated by equation (18) with pointin PG@*, 2).

The co-momenta are now allowed to take rational values and not only integer values. We
define the value of the fulb,-J symbol (X) by

NI+ D!
W= [/, !

if the co-momenta are non-negative integers (with=01) and zero otherwise. Of course,
(X) = 0 if the momentad, b, c) on a line of PG, 2) are not triangular, but, as we shall
see in the next section, it can happen that some co-momenta are negative or non-integer so
that (X) = 0 even when all triangular conditions are satisfied. We \dalble momentahe
momenta of the fullp,-J symbol which were originally in ther3; coefficient anchidden
momentathose which were not.

Using equation (11), we arrive at our main resthie formula of hidden momentahe
value of the 3-j coefficient is given by

x}=NY (=)Px) (23)

(22)
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where the sum is over the hidden momenta of the fyll/ symbol and

Pn
() =Te" (24)
i=1
is a phase factor.
The formula of hidden momenta interprets the summations in the combinatorial
expression: they have the role of concealing the hidden momenta in thg, fullsymbol,
so that only the visible momenta remain.

8. Examples and sum rules

In this section we give examples for tlde 6-j and 9+ coefficients. It will appear that
among the fullp,-J symbol that satisfy all triangular conditions usually a large number
are zero because the co-momenta fail to be non-negative integers. In the formula of hidden
momenta for structurally different:3; coefficients with the same, a visible momentum in

one coefficient can appear as hidden in another. This increases our confidence that hidden
momenta have physical meaning and are not merely summation variables. This also results
in sum rules, equations (28), (34), (57) and (59) below. We have found no reference for
these sum rules which could also be derived from the combinatorial and graphical techniques
in Jucys and Bandzaitis [9, equations (14.3) and (35.4)].

8.1. Thed coefficient

The o coefficientd;, ,;, corresponds to the projective line PGR). Its co-momenta are the
three numbers involved in the triangular conditions (3); there is no hidden momentum. The
full 3-J symbol of PG(12), denoted(j1 j2j3), is
_)./'1+jz+js

(Ajljzjs)z

when triangular conditions (3) are satisfied, and 0 otherwise. Equation (23) contains no
summation:

(j1jeja) = (25)

Opiojs = (Aj1j2j3)2(_)jl+jzﬂs<jlj2j3>- (26)

The degenerate projective space P@[0consisting of only one point, can be considered
to correspond to a degenerate- 3 (for n = 0) with an angular momentum graph formed
of one single loop;j and value{j} = 2j + 1. There is one co-momentum= 2;, and
equations (22)—(24) apply if we pyj) = (—)% (2j +1) for the full 1-7 symbol of PG(02),
€1 = —1 for the sign of the non-zero cycle amd = 1 for the normalizing factor.

The composite angular momentum grapfi{j»} formed of two loopsj; and j, appears
as embedded in the line PG@) with a hidden momenturms. The formula of hidden
momenta equation (23), which reads

Uiz} = D ()22 jy jp ja) (27)
J3
can be considered as a sum rule for theoefficient:
(_)jS—.fl—j29j1j2j3 ) ) ) )
Yo = (o) = 2+ D)2+ D). (28)
(A./l.iz.is)

J3
It can be remarked that, in the full B-symbol, j3 is a visible momentum in equation (26)
but a hidden momentum in equation (27).
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8.2. The 67 and 6-' coefficients

Using the same display of momenta as in figure 2, we have for the fullsymbol of
PG(2 2)

. J7 . TR I (29)
J2 e J1 V). 17!
when all co-momenta (equation (20)) are non-negative integers, and 0 otherwise. The

formula of hidden momenta equation (23) is for thg 6-

j j j Ja J3 s
{ ill jz jz } = AJ'1j2j3 Aj1j5j6 Aj2j4j6 Aj3j4j5 JZ7 < jo j; J1> (30)
where the summation over the hidden momentiris limited by the triangular conditions
Jijaj7, J2jsj7 and jszjejz. Moreover, from the form of equation (20), only values jof
varying with step of 2 will correspond to integer co-momenta and contribute to the sum.
Equation (30) is equivalent to the combinatorial formula of Racah [19, equation (36)] which
reads, when transcribed in our notations,

1 J2 J3
{ } = AjijojaBijrjsio Djaiaje Diajais Z
z

<J’4 J2 J'5>_<—>'”<|l|+1>!

1
1+ j2—Jjs—D'at+ js— ja—2)!
y ()R () 4 o+ a4 js — 24 1))
it+ijs—Je— N2t ja—Jje— D2 (s+je —j1— Jja+ 2z + je — j2 — js + 2)!
(31)
where z runs over integer values such that all factorials have non-negative arguments.
Indeed, equation (31) becomes algebraically identical to equation (30) when the sum over
z is changed to a sum ovey by identifying z with co-momentunis, that is by putting
2= 1+ j2—jatjatjs— je — jn)/2. (32)
The formula of hidden momenta gives thus an entirely new perspective on Racah formula,

revealing that it is not merely a combinatorial expression.
The formula of hidden momenta for the j6{with two momenta equal tgs) is

. . . / j4 j3 j5
J1 J2 Je } (A AL )2 < A > 33

i ; ; J1isje = 2iaje E . J7 .- (33)
{ Ja Js Js o J2 I J1

Comparing equations (30), (33) and (4), we get the sum rule:

Ja Jjs Je

1 {jl J2 j3}= 1 {jl J2 j6}/
Ja AjijojsBjajajs L 14 J5  J6 AjijsjsDjajajs L4 J5  J6
_ (_)J:ﬁjﬁj”js9/'1/'5/'69/'2/416. (34)
(2jo + D Ajijsjs Apiais
Let us now examine the fact that, even when the hidden momenta satisfy all triangular
conditions, the co-momenta are not necessarily non-negative integers. The 66 sets of values
of hidden momentgs, j; of the 6+’
jl j2 jG ' — 5 g 4 ' (35)
Ja Js Je 36 4
which satisfy the triangular conditions are displayed in figure 14. The fullsgambol is
different from zero only for the 24 sets of values indicated by full circies




The hidden angular momenta of Racah amdj3coefficients 8701
7 4 »

J7j3=3
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J773=-1

j7+i5=18

7/2

3/2

£ Jptig=+4
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Figure 14. The values of hidden momenta, j; of the 6+’ coefficient. Values satisfying
triangular conditions are represented: the full cird®sorrespond to non-negative integer co-
momenta, the open circlé3 to integer co-momenta some of which are negative and small dots
‘" to non-integer co-momenta. The rectangle corresponds to non-negative co-momenta.

Let ji”,js” be a particular set of hidden momenta that correspond to integer co-momenta
and put

3= jg(,O) +x1 j1= i+ x. (36)

We see from triangular conditions that thkift vector(xs, xo) has integer components and
from equation (20) that shift vectors corresponding to integer co-momenta form the square
lattice defined by:

{(x1, x2): x1 andx, are both even integers or
x1 andx, are both odd integeys (37)

An example ofgenerator matriXsee Conway and Sloane [20]) for the latticéds= (fl‘i)
The two row-vectors o form a basis of the square lattice and the shift vectors are given
by (x1, x2) = zM wherez = (z1, z2) is a vector with integer components. In figure 14 this
lattice (after a shift of origin) is represented by full or open circles.

Finally, let us determine on what condition the co-momenta are all non-negative. From
equation (20), this is

7t i3S jitjetjatjs—Js

iy — et il 4 s < <
lj1— Jjo— ja+ jsl + Jje . . ' . . . (38)
<Jjr—Jj3a< —lj1— j2+ ja— jsl + Jje

J
lji+j2—Jja—Jjsl —je < Jj

meaning that the hidden momenta belong to the rectangle in figure 14.
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Table 1. Description of the projective geomet® = PG(3, 2) of the 9-j coefficient.

J6 Jj8 rijs5 ja j2 g3 jo Jja j1 g2 g1 r3 r2 ji
¢ 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

b 0001 — 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
I 0010 — O 1 1 0 0 1 1 0 0 1 1 0 0 1 1
I3 0011 + 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
l4 0100 — O 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Is 0101 — 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
lg 0110 — O 1 1 1 1 0 0 0 0 1 1 1 1 0 0
iz 0111 — 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
lg 1000 — O 0 0 0 0 0 0 1 1 1 1 1 1 1 1
lp 1001 — 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
l1p 1010 — O 1 1 0 0 1 1 1 1 0 0 1 1 0 0
l7 1011 — 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
l1 1100 — O 0 0 1 1 1 1 1 1 1 1 0 0 0 0
13 1101 + 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
l14 1110 + O 1 1 1 1 0 0 1 1 0 0 0 0 1 1
5 1111 — 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

8.3. The 95 coefficient

The description of the projective geomet® = PG(3, 2) (and its dualP* = PG(3*, 2))

of the 9-j coefficient is summarized in table 1. The rows (resp. columns) of the table are
associated with points ¢?* (resp.P). The entrya;; in row i = xyzt and columnk = Auvp

has valueix + py + vz + pt € Fa.

The assignment of momenta (the nine visible momeita,, .. ., jo of the 9-j and the
six hidden momentas, g2, g3, r1, r2, r3) to points of P is the same as in figure 3.

The cycles of the 9- are given by the rows of the table. For example, the first row
represents the point 0001 &f* identified with the cycle fs, ja, j3, j1) formed of momenta
corresponding to entries of 1 (disregarding the hidden momentg, ¢> andrs).

The hyperplanes (Fano planes)Rf are given by the columns of the table. For example,
the first column represents the poittivp = 0001 of P and the hyperplane of equation
Ax 4+ pny + vz + pt = 0 formed of points 0010, 0100, 0110, 1000, 1010, 1100 and 1110 of
P* corresponding to zero entries in the table.

Similarly, the hyperplanes P are given by the rows of the table. For example, the
points of the shaded hyperplane in figure 3 correspond to the zero entries of row 1000 of
the table.

The characters are given by (i) = —1 (resp.x;(i) = 1) when entrya;; = 1 (resp.
dik = 0)

The expression of the momenta in terms of co-momenta, equation (13), is read from
the columns of the table. For example, the first column gives

Je=U1+l3+Is+1l7+1lg+ 111+ 13+ 115)/2 (39)

where each term corresponds to an entry of 1 in the table.
The expression of the co-momenta in terms of momenta, equation (18), is read from
the rows of the table. For example, the first row gives

lh=Hje—je+ri—js+ja—jo+gz—jot+tjza—jr+qz2—qr+r3s—r2+j/4 (40)

where a+ (resp.—) sign corresponds to an entry of 1 (resp. 0) in the table.
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The sign of the cycles ig; = 1 for the three collinear cycles forming ling =
(0011,1101 1110 of P* ande; = —1 for the other 12 non-zero cycles. The phase factor
(—)'® equation (24) can be expressed in terms of the momenta: the sum of co-momenta
[; with ¢, = -1

1(X)=q1+q2+q3 (41)

turns out to be the sum of the momenta on the dual ling, @ result that can be understood
geometrically by the same method as for equation (15).

8.3.1. The 35 lines. Let us give some geometric properties of the linesPof The setH
of the nine pointsji, j», ..., jo Of P is the set of points that satisfy the quadratic equation
A = vp. The figureH representing the 9-is a hyperboloid. The 35 lines & can be
classified with respect té as follows.

e Six are theinterior lines which are contained ifif and correspond to the triangular
conditions of the 9t (these lines are also considered totaegentsof H):

J1j2j3 JajsJe J7jsJo

o o o (42)
Jijajr J2J5J]8 J3J6J9-

e Nine aretangentsof H that have just one point in common wit:
J1qar1 J2qars Jaqar2
Jagqar2 Jsqari Jeqirs (43)
J1q3r3 Jsqir2 Joqari.

e 18 are thesecantsof H, having exactly two points in common witH:
J2J791 J1Jsq2 Jijeqs J2Jjari Jijerz J1jsrs
Jjajaq1 J3jsqz J2Jeqs Jajr Jajor2 Jajsrs  (44)
JsJjeq1 JeJ7q2 Jajsqs JeJjsri JsJir2 Jajors.
e Two are theexterior lines of H, having no point in common witf{:
419293 r1rars. (45)

Through each point of{ there are three tangents (among which two interior lines) and
four secants. Theangent spacat a point of H is the Fano plane containing the tangents
through that point. For example, the shaded hyperplane in figure 3 is the tangent space at
point js.

Through each point o \ H there are three secants, three tangents and one exterior
line.

8.3.2. The formula of hidden momenta for thg.9-We have, for the full 15F symbol,

2B gy gs\ _ O+ D!
Ja J5 Joy vy v | T LG e (46)
Jr J8 J9
when all co-momenta (given by equations like equation (40)) are non-negative integers, and
0 otherwise.
The formula of hidden momenta for the j9<€oefficient is the six-fold summation
formula:

i o J2 J3 Ji o J2 J3 a @
JaJs Jep =N Y ()R gs om0 (47)
Jr Js Jo qud4243 Jr Js Jo
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with the normalizing factor
N = Aj1j2j3 Aj4j5j6 Ahjsjg Aj1j4j7 Ajzjsja Aj3j6j9 (48)
and summation limited to hidden momenta satisfying the 29 triangular conditions in
equations (43)—(45). In this formula we have used equation (41) in the expression of
the phase factor, but, since the co-momenta have to be integers, we can teplate 9
by equivalent forms, such as-)"® with
'X)=q+q+qs—21+2h3=jo— ja— ja+ js+ jr+ jo+q1. (49)

As in the case of the -, there are hidden momenta that correspond to non-integer co-
momenta, even when all triangular conditions equations (43)—(45) are satisfied. We define

as before the shift vectan, xo, ..., xg) with integer components by
q1 = Clio) +x q2 = 6];0) + x2 q3 = 6]9 + x3
© © ©) (50)
ri=ry +Xxa rp=ry + X5 r3=ry3 +Xs
whereq?, ..., r{ is a set of hidden momenta that corresponds to integer co-momenta.
Shift vectors corresponding to integer co-momenta form the lafti¢edefined by:
{(xl,xz, ..., xp). all x; even integers or alt; odd integers,
6
> xi=0 (mod 4;}. (51)
i=1
An example of generator matrix for the lattice is
2 2 2 2 2
-1 1 1 1 1 1
1 -1 1 1 1 1
M_11—1111 (52)
1 1 1 -1 1 1

1 1 1 1 -11

The shift vectors are given by, xo, ..., xg) = zM wherez = (z1, 22, ..., 26) IS @ vector

with integer components. A fundamental cell of the lattice, containing only one shift
vector, has volume déf = 64. It results that usually in equation (47) a large fraction

of the summed terms are zero because the corresponding co-momenta are non-integers.
The hidden momenta are further limited to the polytope in six dimensions (generalizing
the rectangle in figure 14) defined By> 0 (i = 1, 2, ..., 15). For example, for the 9-

3 4 5
coefficient{ 6 7 8 } there are 25564 sets of hidden momenta that satisfy all triangular
9 10 11

conditions, 426 of which correspond to integer co-momenta. Moreover, among these 426
sets only eight sets correspond to non-negative co-momenta and so to non-zero terms in the
summation of equation (47).

Various six-fold summation formulae for the Phave been given by Wu [21]. They are
based on a generating function for thg Sirst obtained by Schwinger [22] in a creation and
annihilation operator approach, and then rederived by Wu using a formalism from Bargmann
[23]. The combinatorial formula equation (11) of the-3 coefficient used in this paper
derives from a generating function which for thej 9s the same as that of Schwinger. It
results that these various six-fold summation formulae are equivalent to equation (47) in the
sense that the non-zero terms that are summed are the same in all formulae. Here again,
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+ Q1 -
Jo Ja
f7 j3
_ . +
J9
is je
+ is -

Figure 15. The 9+’ coefficient.

as in the case of Racah formula, the formula of hidden momenta adds physical meaning to
these combinatorial expressions.

8.3.3. The 9} coefficient of the second kindThe 9-;’ coefficient(9-j coefficient of the
second kind) defined by figure 15 is a product of twg 6eefficients:

L
a2 3 _)i2 oo qal)is Ja @
Jads Jo =10 s jaf Vs Jo Js) 3)
Jr J8 J9
We have labelled the momenta so that thig' & embedded irP as in figure 3 and table 1,
but now the visible momenta aeg, j», js, ..., jo and the hidden momenta aye g2, g3,
r1, r2, r3, SO that momentg; andg; have swapped the visible/hidden attributes they had in
the 9-j. The full 15-/ symbol is still given by equation (46) and the cycles by table 1. For
example, point 0001 oP* is associated with cyclejd, js, j3). The signs of the cycles are
now ¢; = 1 for the three collinear cycles= 0001, 0010, 0011 and = —1 for the other
12 non-zero cycles. The phase facten’® is independent of the hidden momenta:

t(X) =q1+ j5+ jo. (54)

The formula of hidden momenta for the j9-coefficient is the six-fold summation
formula:

a2 Js) o Ji o J2 J3 “ B s

ja js Jjey = N'(—)ntiste E Ja Js Je (55)
. . . : . . . i rz r3

Jr J8 J9 Jia29s \ J7J8 ]9

rirar3
with the normalizing factor
N = Ajzjﬂh Aj3j4q1 Ajzjsja Aj3j6j9 Aj4j5j6 Aj7j8j9' (56)
Comparing with equation (47), used with expression equation (49) instead-gb+¢3
in the phase factor, we get the sum rule:

5 1 1 J2 J3
A )J4 J5 s
i Ajijojs Dirisir j7 Jjs Jjo
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Figure 16. The graphG, of the 3:-; coefficient{U, a}.  Figure 17. The graphG, of the 3:-j coefficient{U, b}.

=(_)jz—j3—j4+j72;{1:2 Jr 611}{]3 Ja ql} (57)
a1 Ajyjign Djsjagr LJ9 5 I8 J5 J9 e

8.4. A sum rule

The sum rules, equations (28), (34) and (57), can be generalized to a sum rule relating the
3n-j coefficients depicted in figures 16 and 17. The graghsand G, have an identical
part (box B and edgesjs, j1, j2, ja) excepted that orientations of edge are opposite.
They generalize figures 5 and 7 by replacing eggand its two adjacent vertices by box
B and renamingiz asa or b. We denote the:3j by {U, a} and{U, b} whereU is the set
of common angular momenta. Botlk-3J can be embedded in the same projective space
PG, 2). Let us first suppose that no two momenta are associated to the same point of
PG, 2). We have then a fulp,-J symbol (U, a, b, H) where visible momenturna of
{U, a} also appears as a hidden momentunflofb} and where we denote by the set of
the common hidden momenta.

The cycles of the two graphs are completely defined by their edgds$. ot is easily
checked that the sign of a cycle 6f, is the same as the sign of the cycle®j that has
the same edges dii. (Some of the cases to be considered occur in figures 8 and 9, where
cyclese; (i = 1,...,7) with the same& have the same edges &h= {j1, j2, ja, js, j6}.)
The 3:-;j are thus given by the formula of hidden momenta as

{U’ a} = AajljzAaj4j5NB Z(_)I<U7 aa b? H)
H.b

(58)

(U, b} = ApjyjsDbjpjiNa Y (=)' (U, a, b, H)
H,a

with the same phase factor and whev¥g is a product of common triangle factors. From
these equations we obtain the sum rule relating thg 8oefficients in figures 16 and 17:

1 1
{U,a} = ——{U, b}. (59)
Aajljz Aaj4j5 Xb: AbjljSAbj2j4
This sum rule remains valid when momentwns associated to the same point of R(X)

as another momentum (as in figure 11): the sunbas then reduced to one term only as
in equation (34).

9. Concluding remarks

The full p,-J symbol (22) is highly symmetric. It is invariant in the,! permutations
of the co-momenta. In the space of momenta, these symmetries form a group of linear
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transformations. A subgroup of these symmetries consists of the collineations, which
permute points and lines, both in BGR) and its dual, thus conserving the set of values of
the momenta as well as the set of their triangular relations.
For the 65, among the 7= 5040 symmetries, 144 leavg fixed at the same point
in PG(2 2): these are the Regge [24] symmetries of th¢. 6Among these, 6« 4 are
collineations that correspond to the 24 geometric symmetries of the tetrahedron (figure 5).
We give a state model interpretation of the fpllJ symbol (22) and of the co-momenta
inspired by the chromatic method of evaluating Penrose spin networks (see Penrose [25],
Moussouris [26] and Kauffman [27]). Let us consider a systerti|dflentical objects that
are partitioned irp, boxes, box containingl/; objects ( =1, 2, ..., p,). The co-momenta
[; thus appear as occupation numbers. We have avaitablg| colours to paint the objects.
We call astateof the system a colouring of thi¢| objects such that no two objects have
the same colour. The number of states of this system is

cc—=1D...(c—l|+1
iy li!

Considered in terms of variable for given X, equation (60) defines a polynomial that
takes integer values whanis a positive or negative integer. Evaluating the polynomial
at c = —2, which corresponds to the ‘number of colours’ of spin networks, yields the full
pn-J symbol (22).

For 6, 6-j and 95 coefficients, the chromatic method of evaluating spin networks,
based orcircuit decompositions gives a formula similar to equation (11), basedyote
decompositions. The two formulae differ for the other 8 coefficients, when a cycle can
be composed of several circuits as in figure 9. Instead of the simple expression (60) for a
cycle configuration, the chromatic polynomial for a circuit configuration has a more complex
expression. This becomes important when one considers the generalization of the 3
guantum groupy-3n-;j coefficients. The principle of replacing factorials by quantum
integer factorialsf]! is useful for guessing the quantum formula of #n-;. Kauffman
and Lins [28, pp 91-2] pointed out that the quantization of the chromatic polynomial to
higherg-3n-j was not clear. With our method of cycle decompositions, equation (22) has
the same structure for alln3j, so that we have a way to quantize the general formula of
the 3i-j.

Let us rewrite diagram (1) as

P(X,c)=

(60)

angular-momentum
. object
co-momentum duality .
object — hidden part of (61)
angular-momentum
object

We have seen the validity of such a diagram when the angular-momentum objeat-is a 3
When the angular-momentum object is a spielementary particle statgm), it makes
sense to suppose that there is no hidden part and that the co-momenta=age+ m,

w = j —m, usually interpreted as occupation numbers of two-oscill