The hidden angular momenta of Racah and ${ }^{3 n}-\boldsymbol{j}$ coefficients

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 318689
(http://iopscience.iop.org/0305-4470/31/43/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 02/06/2010 at 07:18

Please note that terms and conditions apply.

The hidden angular momenta of Racah and $3 n-j$ coefficients

Jean-Jacques Labarthe
Laboratoire Aimé Cotton, Université Paris 11, F91405 Orsay Cedex, France

Received 17 June 1998

Abstract

The Racah formula for the $\operatorname{SU}(2) 6-j$ coefficient is usually considered as a pure combinatorial formula. A physical interpretation is found for this formula and, more generally, for combinatorial formulae of the $3 n-j$ coefficients. Angular momenta are associated with the p_{n} points of the finite projective geometry $\operatorname{PG}(n, 2)$ where triangular conditions appear as collinearities of points. A $3 n-j$ coefficient corresponds to a subset of $\operatorname{PG}(n, 2)$ so that some of the p_{n} angular momenta are hidden for the $3 n-j$. The combinatorial formula of the $3 n-j$ is interpreted as the summation over these hidden angular momenta of a highly symmetric 'full $p_{n}-J$ symbol'.

1. Introduction

Many links between geometry and the theory of angular momentum in quantum mechanics have long been known (Wigner [1], Fano and Racah [2], Biedenharn and Louck [3]). When coupling two angular momenta j_{1} and j_{2} to form j_{3}, we often think of the triplet $\left(j_{1}, j_{2}, j_{3}\right)$ as a triangle with sides of length j_{1}, j_{2} and j_{3} and speak of triangular condition (euclidian geometry). In the angular momentum graphs introduced by Jucys (whose name is also spelled Yutsis), Levinson and Vanagas [4, 5] the momenta are associated with edges and triangular conditions with vertices (graph theory). The association of momenta to faces of tetrahedra has been considered more recently by Barbieri [6] (simplicial geometry). In this paper momenta will be associated with points and triangular conditions with collinearities of points (projective geometry).

In Fano and Racah [2], the 6- j coefficient $\left\{\begin{array}{lll}j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6}\end{array}\right\}$ is depicted by a complete quadrilateral (figure 1), where the four triangular conditions correspond to the four lines. This description has been used to interpret various relations between $6-j$ coefficients [2,3]. Robinson [7], remarking that we are really interested in only three points of each line, introduced the finite projective geometries $\operatorname{PG}(n, 2)$.

The finite projective space $\operatorname{PG}(2,2)$, also known as the Fano plane (figure 2), contains seven points and seven lines. Each line contains exactly three points (one line is depicted as a circle in figure 2). $\operatorname{PG}(2,2)$ is constructed from the three-dimensional vector space \mathbb{F}_{2}^{3} over the two-element field $\mathbb{F}_{2}=\{0,1\}$. The space \mathbb{F}_{2}^{3} is formed of eight elements of coordinates (λ, μ, ν) in the standard basis which we code by the binary number $\lambda \mu \nu$. The seven non-zero elements of \mathbb{F}_{2}^{3} are identified with the points of $\mathrm{PG}(2,2)$. Given two different points e and e^{\prime} of $\mathrm{PG}(2,2)$, there is exactly one line passing through these points and the third point $e^{\prime \prime}$ on the line corresponds to relation $e+e^{\prime}+e^{\prime \prime}=0$ in \mathbb{F}_{2}^{3}. By placing the

Figure 1. The $6-j$ coefficient in projective geometry.

Figure 2. The Fano plane $\operatorname{PG}(2,2)$ of momenta for the 6-j.
quadrilateral (figure 1) in figure 2, Robinson interpreted six of the seven points of $\mathrm{PG}(2,2)$ as a 6-j symbol.

In this paper we present an interpretation of the $6-j$ coefficient in terms of all seven points of $\mathrm{PG}(2,2)$. The momenta of the $6-j$ are associated with six points of $\mathrm{PG}(2,2)$ as in Robinson and a hidden momentum is associated with the seventh point (point 111 in figure 2), thus forming a set of seven momenta and a full 7-J symbol. The hidden momentum can take any value satisfying the triangular conditions represented by the three lines passing through point 111. The dual projective space $\operatorname{PG}\left(2^{*}, 2\right)$ is a second Fano plane. Points in one Fano plane are in duality relation with lines in the other Fano plane, collinear points corresponding to concurrent lines. We associate one non-negative integer to each of the seven points of $\operatorname{PG}\left(2^{*}, 2\right)$ that we call the co-momentum of that point. The seven co-momenta are discrete Fourier transforms of the seven momenta. We define the value of the full 7-J symbol as a simple expression which is invariant in all 7! permutations of the co-momenta. The Racah formula for the $6-j$ coefficient is then interpreted as the summation of the full 7-J symbol over all values of the hidden momentum.

We have obtained similar results for the general $3 n-j$ coefficient, summarized by the diagram:

As another example, the geometry of the $9-j$ coefficient is the three-dimensional 15point space $\operatorname{PG}(3,2)$ (figure 3). Adding six hidden momenta to the $9-j$ we define a full $15-J$ symbol with 15 ! permutational symmetries in the space of co-momenta. The value of the $9-j$ is obtained by a summation over the six hidden momenta of this full 15- J symbol multiplied by a phase factor.

We begin by defining the $3 n-j$ coefficient from its angular momentum graph G (section 2). The cycles of G (section 3) are used to define the spaces $\operatorname{PG}\left(n^{*}, 2\right)$ (section 4) and $\mathrm{PG}(n, 2)$ (section 5). By using the combinatorial formula in Labarthe [8] we define the co-momenta (section 6) and the full $p_{n}-J$ symbol and derive our main result (section 7). We then examine examples and show how to obtain sum rules for the $3 n-j$ coefficients (section 8). To conclude the paper we consider the interpretation of the full $p_{n}-J$ symbol (section 9).

Figure 3. The $\mathrm{PG}(3,2)$ geometry of the $9-j$ coefficient. Seven lines pass through each of the 15 points, but only some of the 35 lines are represented. One of the fifteen 2-subspaces (Fano planes) is shaded.

2. Angular momentum graphs

A $3 n-j$ coefficient is defined by its angular momentum graph G (see [9-12]). The graph defines an invariant of $\mathrm{SU}(2)$ constructed from $3 n$ momenta which label the edges. G is a trivalent graph (three edges meet at each of the $2 n$ vertices).

The $3 n-j$ coefficient ($n=1$) in figure 4 is the θ coefficient so named from its shape. The graph defines the value of the θ coefficient as
$\theta_{j_{1} j_{2} j_{3}}=\sum_{m_{1}, m_{2}, m_{3}}\left(\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & m_{3}\end{array}\right)(-)^{j_{1}-m_{1}+j_{2}-m_{2}+j_{3}-m_{3}}\left(\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ -m_{1} & -m_{2} & -m_{3}\end{array}\right)$.
The left vertex in figure 4 corresponds to a coupling of the three angular momenta j_{1}, j_{2}, j_{3} and to the first $3-j$ symbol in equation (2). The \pm sign at a vertex of G fixes the cyclic order of the momenta in the $3-j$ symbol in equation (2). The way the projection number m of momentum j and the phase factor appear in equation (2), as $\left(\ldots{ }_{m}^{j} \cdots\right)$ and $(-)^{j-m}\left(\cdots{ }_{-m}^{j} \cdots\right)$, is fixed by the arrow on edge j. Changing the sign of a vertex $\left(j_{1}, j_{2}, j_{3}\right)$ or the direction of an edge j multiplies the $3 n-j$ by $(-)^{j_{1}+j_{2}+j_{3}}$ or $(-)^{2 j}$ respectively. The value of $\theta_{j_{1} j_{2} j_{3}}$ is 1 when the set of momenta $\left(j_{1}, j_{2}, j_{3}\right)$ satisfies the triangular conditions, namely

$$
\begin{equation*}
j_{1}+j_{2}-j_{3} \quad j_{2}+j_{3}-j_{1} \quad \text { and } \quad j_{3}+j_{1}-j_{2} \tag{3}
\end{equation*}
$$

are non-negative integers, and 0 otherwise.

Figure 4. The θ coefficient.

Figure 5. The 6- j coefficient.

Figure 6. The 9- j coefficient.

Figure 7. The $6-j^{\prime}$ coefficient.

The value of the general $3 n-j$ coefficient is defined similarly by its graph. The $6-j$ coefficient $\left\{\begin{array}{lll}j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6}\end{array}\right\}$ is represented by the tetrahedron graph (figure 5) and the $9-j$ coefficient $\left\{\begin{array}{lll}j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6} \\ j_{7} & j_{8} & j_{9}\end{array}\right\}$ is given by figure 6 .

We shall also admit as a $3 n-j(n=2)$ the $6-j$ of second kind in figure 7, which we call $6-j^{\prime}$ and denote

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \tag{4}\\
j_{4} & j_{5} & j_{6}
\end{array}\right\}^{\prime}=\frac{(-)^{j_{1}+j_{2}+j_{4}+j_{5}}}{2 j_{6}+1} \theta_{j_{1} j_{5} j_{6}} \theta_{j_{2} j_{4} j_{6}} \delta_{j_{3} j_{6}}
$$

3. The edge space and its cycle subspace

Let E be the set of the edges of graph G. For the $6-j$ coefficient the set of the edges is $E=\left\{j_{1}, j_{2}, \ldots, j_{6}\right\}$, where we designate the edges by the same symbol as the momenta. The edge space \mathcal{E} of the graph is the vector space over the two-element field \mathbb{F}_{2} of functions

Figure 8. The non-zero cycles of the $6-j$ coefficient.
$E \rightarrow \mathbb{F}_{2}$. The support of a function $f \in \mathcal{E}$ is the subset $F \subseteq E$ of the edges $e \in E$ such that $f(e)=1$. We shall not distinguish between a function and its support. The sum of two edge subsets $F, F^{\prime} \subseteq E$ is then their symmetric difference $\left(F \backslash F^{\prime}\right) \cup\left(F^{\prime} \backslash F\right)$.

A cycle of graph G is a subset of edges which form any number of circuits (for a formal definition see for example Diestel [13]). For the $6-j$ coefficient, there are $8=2^{3}$ cycles, the seven cycles represented in figure 8 and the empty set (the zero cycle). Figure 9 gives the seven non-zero cycles of the $6-j^{\prime}$ of figure 7. All non-zero cycles consist of one circuit each, excepted e_{3} which is formed of two circuits. Given two cycles e_{1}, e_{2} and scalars $\lambda_{1}, \lambda_{2} \in \mathbb{F}_{2}$, the linear combination $\lambda_{1} e_{1}+\lambda_{2} e_{2}$ is a cycle: the cycles form the cycle-subspace \mathcal{C} of \mathcal{E}. The dimension of \mathcal{C} for a graph with c components, a vertices and b edges is $b-a+c$ (see Biggs [14]). For simplicity, we shall assume that the $3 n-j$ graph is connected $(c=1)$, but the exposition that follows remains valid with $c>1$ components if the coefficient is thought of as a ' $3(n+c-1)-j$ ' instead of a $3 n-j$. For example, a composite graph of two θ, though involving six angular momenta, should be considered as a ' $9-j$ '. For a $3 n-j$, the cycle-subspace is of dimension $n+1$ and contains 2^{n+1} elements.

4. The projective space $\operatorname{PG}\left(n^{*}, 2\right)$

Let us first consider the $6-j$ coefficient. A basis of \mathcal{C} is given by the cycles e_{5}, e_{6}, e_{7}. We code element $x e_{5}+y e_{6}+z e_{7}$ by the binary number $x y z$ (for example $e_{2}=e_{5}+e_{7}$ is coded by 101). We identify the seven non-zero cycles $e_{i}(i=1,2, \ldots, 7)$ of \mathcal{C} with the Fano plane $\operatorname{PG}\left(2^{*}, 2\right)$ (figure 10). Similar projective spaces have been considered for general graphs in connection with the theory of graph colourings (see Holton and Sheenhan [15] and Tutte [16]).

To generalize to any $3 n-j$ we introduce the projective space $\operatorname{PG}\left(n^{*}, 2\right)$. The $p_{n}=$ $2^{n+1}-1$ points of this space are identified with the non-zero cycles of the $3 n-j$. The k subspaces of $\operatorname{PG}\left(n^{*}, 2\right)$ are the points $(k=0)$, the lines $(k=1)$, the planes $(k=2), \ldots$ and

Figure 9. The non-zero cycles of the $6-j^{\prime}$ coefficient.
the hyperplanes $(k=n-1)$. They are projective subspaces of projective dimension k, for example each of the p_{n} hyperplanes can be considered as a projective space $\operatorname{PG}(n-1,2)$ of $2^{n}-1$ points.

In the evaluation of the $6-j$ coefficient we shall need to know the cycles that contain a given edge. For example edge j_{1} of the $6-j$ is contained in cycles e_{2}, e_{3}, e_{6} and e_{7} (see figure 8): these are the points of the Fano plane (figure 10) outside the line (e_{1}, e_{4}, e_{5}). Let us now determine the cycles $e \in \mathcal{C}$ that contain a given edge $a \in E$ in the general case. Let $\chi_{a}(e)$ be the function $\mathcal{C} \rightarrow\{-1,+1\}$ defined by $\chi_{a}(e)=-1$ if cycle e contains edge a and $\chi_{a}(e)=1$ otherwise. The function χ_{a} is a character (in this paper the word 'character' will mean irreducible character) of the Abelian group \mathcal{C} :

$$
\begin{equation*}
\chi_{a}\left(e+e^{\prime}\right)=\chi_{a}(e) \chi_{a}\left(e^{\prime}\right) \quad \text { for } e, e^{\prime} \in \mathcal{C} \tag{5}
\end{equation*}
$$

The characters of \mathcal{C} are associated to the hyperplanes of $\operatorname{PG}\left(n^{*}, 2\right)$: χ_{a} takes the value -1 on the points outside a hyperplane a^{*} and +1 on the points of the hyperplane a^{*} and at 0 (in \mathcal{C}).

5. The projective space $\operatorname{PG}(n, 2)$ of momenta

In the duality of projective spaces, the preceding hyperplane a^{*} of $\operatorname{PG}\left(n^{*}, 2\right)$ is identified with a point a of $\operatorname{PG}(n, 2)$. Figure 2 represents $\operatorname{PG}(2,2)$ for the $6-j$. The point $\lambda \mu \nu$ of $\operatorname{PG}(2,2)$ corresponds to the line of $\operatorname{PG}\left(2^{*}, 2\right)$ given by equation $\lambda x+\mu y+\nu z=0$ for the points $x y z$ in $\mathrm{PG}\left(2^{*}, 2\right)$. Six points of $\mathrm{PG}(2,2)$ are labelled by the momenta of the $6-j$ which are thus embedded in $\operatorname{PG}(2,2)$. For example point 011 of $\operatorname{PG}(2,2)$, corresponding to line $\left(e_{1}, e_{4}, e_{5}\right)$ of equation $y+z=0$ of $\operatorname{PG}\left(2^{*}, 2\right)$ is labelled with j_{1}. Figures 2 and 10 have been drawn so as to make their duality apparent.

Figure 10. The Fano plane of co-momenta $\operatorname{PG}\left(2^{*}, 2\right)$.

For the $6-j^{\prime}$, we have labelled the cycles in figure 9 so that the projective space $\mathrm{PG}\left(2^{*}, 2\right)$ is the same as for the $6-j$ (figure 10). In the labelling of $\operatorname{PG}(2,2)$ by the momenta of the $6-j^{\prime}$ that results (figure 11), only five of the seven points are labelled with momenta, j_{3} and j_{6} labelling the same point (corresponding to the fact that the $6-j^{\prime}$ is 0 unless $j_{3}=j_{6}$).

When an edge a of an angular momentum graph G is an isthmus, meaning that one part of the graph can be removed by cutting this edge, the corresponding $3 n-j$ is 0 unless momentum $a=0$. Since an isthmus is not contained in any cycle of G, the corresponding momentum is not embedded in $\operatorname{PG}(n, 2)$.

We remark that a coupling of angular momenta is represented by a line of $\operatorname{PG}(2,2)$. For example $\left(j_{2}, j_{4}, j_{6}\right)$ form a line. This property generalizes to $\mathrm{PG}(n, 2)$. Indeed, let (a, b, c) be three edges coupled in the $3 n-j$ coefficient. In each cycle there is an even number of these edges, so that the corresponding characters are linked by

$$
\begin{equation*}
\chi_{a}(e) \chi_{b}(e) \chi_{c}(e)=1 \quad \forall e \in \operatorname{PG}\left(n^{*}, 2\right) \tag{6}
\end{equation*}
$$

implying that the hyperplanes a^{*}, b^{*}, c^{*} associated to the characters have an $(n-2)$-subspace in common. In the dual space $\operatorname{PG}(n, 2)$ this means that the corresponding points (a, b, c) are collinear.

6. The co-momenta

The combinatorial formula of the $3 n-j$ coefficient is based on its non-zero cycles (Labarthe [8], where the non-zero cycles are called closed diagrams). To each non-zero cycle e_{i} is associated a $\operatorname{sign} \epsilon_{i}= \pm 1$ computed by the following rules:

- orient all circuits of e_{i} in an arbitrary fashion.
- multiply the factors:
-at each vertex of e_{i}, a factor of +1 if the cyclic order of the edges is (incoming edge, outgoing edge, third edge) and -1 otherwise (figure 12).
-on each edge of e_{i}, a factor of +1 if the directions of the edge and cycle are opposite or -1 if they are the same (figure 13).
-a factor -1 for each circuit.
Note that the value of ϵ_{i} is independent of the orientation chosen for the circuits. Examples: for the θ coefficient (figure 4) $\epsilon_{i}=-1$ for the three non-zero cycles; for the 6- j

Figure 12. Vertex factor.

Figure 13. Edge factor.
and $6-j^{\prime}$ coefficients (figures 5 and 7) $\epsilon_{i}=1$ for all non-zero cycles.
To each set of values of momenta in a $3 n-j$ we associate an array x of these $3 n$ values. For example, we associate the 1×3 array $x=\left[\begin{array}{lll}j_{1} & j_{2} & j_{3}\end{array}\right]$ to $\theta_{j_{1} j_{2} j_{3}}$ and the 2×3 array $x=\left[\begin{array}{lll}j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6}\end{array}\right]$ to the $6-j\left\{\begin{array}{lll}j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6}\end{array}\right\}$. We denote by R the space of arrays like these when the entries are integers or half-integers that satisfy the triangular conditions of the $3 n-j$, with $\{x\}$ the value of the $3 n-j$ associated to array $x \in R$ and $\mathbb{N}=\{0,1,2, \ldots\}$ the set of non-negative integers.

For arrays in R, we have the usual addition and multiplication by a scalar $\lambda \in \mathbb{N}$. For example, in the case of the θ, if $x=\left[\begin{array}{lll}j_{1} & j_{2} & j_{3}\end{array}\right]$ and $x^{\prime}=\left[\begin{array}{lll}j_{1}^{\prime} & j_{2}^{\prime} & j_{3}^{\prime}\end{array}\right]$ we have $x+x^{\prime}=\left[\begin{array}{lll}j_{1}+j_{1}^{\prime} & j_{2}+j_{2}^{\prime} & j_{3}+j_{3}^{\prime}\end{array}\right]$ and $\lambda x=\left[\begin{array}{lll}\lambda j_{1} & \lambda j_{2} & \lambda j_{3}\end{array}\right]$. It is easy to see that if $x, x^{\prime} \in R$ and $\lambda \in \mathbb{N}$ then $x+x^{\prime} \in R, \lambda x \in R(R$ is closed under addition and multiplication by a non-negative integer scalar).

To each non-zero cycle e_{i} we associate an array in R corresponding to momenta of $\frac{1}{2}$ on the edges of e_{i} and zero for the remaining edges. To simplify notations, these elements of R are denoted by the same name as the cycles. They are for the $6-j$:

$$
\begin{array}{lll}
e_{1}=\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right] & e_{2}=\left[\begin{array}{lll}
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right] & e_{3}=\left[\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right] \\
e_{4}=\left[\begin{array}{lll}
0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right] & e_{5}=\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & 0
\end{array}\right] & e_{6}=\left[\begin{array}{lll}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0
\end{array}\right] \\
e_{7}=\left[\begin{array}{lll}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right] . & &
\end{array}
$$

Each element $x \in R$ can be decomposed over these p_{n} arrays $e_{i} \in R\left(i=1,2, \ldots, p_{n}\right)$ as

$$
\begin{equation*}
x=\sum_{i=1}^{p_{n}} l_{i} e_{i} \quad l_{i} \in \mathbb{N} . \tag{8}
\end{equation*}
$$

We call l_{i} the co-momentum at point e_{i} of $\operatorname{PG}\left(n^{*}, 2\right)$. Since the arrays e_{i} are not independent in R, decomposition (8) is not unique in general, but the number of different decompositions is always finite because the co-momenta have to be non-negative integers.

The normalizing factor N of the $3 n-j$ coefficient is the product of the triangle factors of the $2 n$ couplings (a, b, c) :

$$
\begin{equation*}
N=\prod_{(a, b, c)} \Delta_{a b c} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{a b c}=\left(\frac{(a+b-c)!(b+c-a)!(c+a-b)!}{(a+b+c+1)!}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

The value of the $3 n-j$ coefficient is expressed as:

$$
\begin{equation*}
\{x\}=N \sum\left(\prod_{i=1}^{p_{n}}\left(-\epsilon_{i}\right)^{l_{i}}\right) \frac{(|l|+1)!}{\prod_{i=1}^{p_{n}} l_{i}!} \tag{11}
\end{equation*}
$$

where the sum is over the decompositions (8) of x in co-momenta and where $|l|=\sum_{i=1}^{p_{n}} l_{i}$.
For a given set of co-momenta, equation (8) gives the momenta of x. For example, for the $6-j$ we have using equation (7):

$$
\begin{align*}
& j_{1}=\left(l_{2}+l_{3}+l_{6}+l_{7}\right) / 2 \\
& j_{2}=\left(l_{1}+l_{3}+l_{5}+l_{7}\right) / 2 \\
& j_{3}=\left(l_{1}+l_{2}+l_{5}+l_{6}\right) / 2 \tag{12}\\
& j_{4}=\left(l_{2}+l_{3}+l_{4}+l_{5}\right) / 2 \\
& j_{5}=\left(l_{1}+l_{3}+l_{4}+l_{6}\right) / 2 \\
& j_{6}=\left(l_{1}+l_{2}+l_{4}+l_{7}\right) / 2 .
\end{align*}
$$

We see, more generally, that the momentum j_{k} associated to point k of $\operatorname{PG}(n, 2)$ is half the sum of the co-momenta at points in $\operatorname{PG}\left(n^{*}, 2\right)$ outside the hyperplane dual to k, or in terms of characters:

$$
\begin{equation*}
j_{k}=\frac{1}{2} \sum_{\chi_{k}(i)=-1} l_{i} \quad \text { for } k=1,2, \ldots, p_{n} \tag{13}
\end{equation*}
$$

Let us mention that equations similar to equation (13) occur with different quantities and different meanings in Conway (assisted by Fung) [17], where PG(2,2) and its dual are used in the geometric classification of the three-dimensional lattices in terms of their Voronoï cells, and in Fairlie and Ueno [18, equations (10) and (11)], where $\operatorname{PG}(n, 2)$ is associated with integrable top equations. We have extended equation (13) to define momenta at all points of $\operatorname{PG}(n, 2)$, even those that were not momenta in the $3 n-j$ coefficient. So for the $6-j$, we have added momentum j_{7} at point 111 of figure 2 with value

$$
\begin{equation*}
j_{7}=\left(l_{4}+l_{5}+l_{6}+l_{7}\right) / 2 \tag{14}
\end{equation*}
$$

This momentum j_{7} satisfies the triangular relations corresponding to lines in $\operatorname{PG}(2,2)$: the sets $\left(j_{1}, j_{4}, j_{7}\right),\left(j_{2}, j_{5}, j_{7}\right)$ and $\left(j_{3}, j_{6}, j_{7}\right)$ are triangular if the co-momenta are nonnegative integers. This property remains true in the general setting of $\operatorname{PG}(n, 2)$. Let (a, b, c) be a triplet of momenta on line d in $\operatorname{PG}(n, 2)$. Since the corresponding dual hyperplanes a^{*}, b^{*}, c^{*}, which have the $(n-2)$-subspace d^{*} in common, cover all $\operatorname{PG}\left(n^{*}, 2\right)$, we have, using equation (13),

$$
\begin{equation*}
a+b-c=\sum l_{i} \tag{15}
\end{equation*}
$$

where the sum is over the points of c^{*} not in d^{*}. This shows that $a+b-c \in \mathbb{N}$, and similarly $b+c-a \in \mathbb{N}$ and $c+a-b \in \mathbb{N}$, meaning that the set (a, b, c) is triangular, if the co-momenta are non-negative integers.

Introducing

$$
\begin{equation*}
l_{0}=-\sum_{i=1}^{p_{n}} l_{i}=-|l| \quad j_{0}=0 \tag{16}
\end{equation*}
$$

and denoting the character with constant value 1 on \mathcal{C} by χ_{0}, we can rewrite equation (13) as

$$
\begin{equation*}
j_{k}=-\frac{1}{4} \sum_{i=0}^{p_{n}} \chi_{k}(i) l_{i} \quad \text { for } k=0,1,2, \ldots, p_{n} \tag{17}
\end{equation*}
$$

This means that the momenta are discrete Fourier transforms of the co-momenta, so that the inverse Fourier transform of equation (13) is

$$
\begin{equation*}
l_{i}=-\frac{1}{2^{n-1}} \sum_{k=1}^{p_{n}} \chi_{k}(i) j_{k} \quad \text { for } i=1,2, \ldots, p_{n} \tag{18}
\end{equation*}
$$

with, for the sum of co-momenta,

$$
\begin{equation*}
|l|=\frac{1}{2^{n-1}} \sum_{k=1}^{p_{n}} j_{k} \tag{19}
\end{equation*}
$$

For example, for the $6-j$, the inverse of equations (12) and (14) is

$$
\begin{align*}
l_{1} & =\left(-j_{1}+j_{2}+j_{3}-j_{4}+j_{5}+j_{6}-j_{7}\right) / 2 \\
l_{2} & =\left(+j_{1}-j_{2}+j_{3}+j_{4}-j_{5}+j_{6}-j_{7}\right) / 2 \\
l_{3} & =\left(+j_{1}+j_{2}-j_{3}+j_{4}+j_{5}-j_{6}-j_{7}\right) / 2 \\
l_{4} & =\left(-j_{1}-j_{2}-j_{3}+j_{4}+j_{5}+j_{6}+j_{7}\right) / 2 \tag{20}\\
l_{5} & =\left(-j_{1}+j_{2}+j_{3}+j_{4}-j_{5}-j_{6}+j_{7}\right) / 2 \\
l_{6} & =\left(+j_{1}-j_{2}+j_{3}-j_{4}+j_{5}-j_{6}+j_{7}\right) / 2 \\
l_{7} & =\left(+j_{1}+j_{2}-j_{3}-j_{4}-j_{5}+j_{6}+j_{7}\right) / 2
\end{align*}
$$

with sum

$$
\begin{equation*}
|l|=\left(+j_{1}+j_{2}+j_{3}+j_{4}+j_{5}+j_{6}+j_{7}\right) / 2 . \tag{21}
\end{equation*}
$$

7. The formula of hidden momenta

We now interpret equation (11) by defining a full $p_{n}-J$ symbol. Let X be an array of p_{n} angular momenta $j_{k}\left(k=1,2, \ldots, p_{n}\right)$. We associate j_{k} with point k in $\operatorname{PG}(n, 2)$ and the co-momentum $l_{i}\left(i=1,2, \ldots, p_{n}\right)$ calculated by equation (18) with point i in $\operatorname{PG}\left(n^{*}, 2\right)$. The co-momenta are now allowed to take rational values and not only integer values. We define the value of the full $p_{n}-J$ symbol $\langle X\rangle$ by

$$
\begin{equation*}
\langle X\rangle=\frac{(-)^{|l|}(|l|+1)!}{\prod_{i=1}^{p_{n}} l_{i}!} \tag{22}
\end{equation*}
$$

if the co-momenta are non-negative integers (with $0!=1$) and zero otherwise. Of course, $\langle X\rangle=0$ if the momenta (a, b, c) on a line of $\operatorname{PG}(n, 2)$ are not triangular, but, as we shall see in the next section, it can happen that some co-momenta are negative or non-integer so that $\langle X\rangle=0$ even when all triangular conditions are satisfied. We call visible momenta the momenta of the full $p_{n}-J$ symbol which were originally in the $3 n-j$ coefficient and hidden momenta those which were not.

Using equation (11), we arrive at our main result, the formula of hidden momenta. The value of the $3 n-j$ coefficient is given by

$$
\begin{equation*}
\{x\}=N \sum(-)^{t(X)}\langle X\rangle \tag{23}
\end{equation*}
$$

where the sum is over the hidden momenta of the full $p_{n}-J$ symbol and

$$
\begin{equation*}
(-)^{t(X)}=\prod_{i=1}^{p_{n}}\left(\epsilon_{i}\right)^{l_{i}} \tag{24}
\end{equation*}
$$

is a phase factor.
The formula of hidden momenta interprets the summations in the combinatorial expression: they have the role of concealing the hidden momenta in the full $p_{n}-J$ symbol, so that only the visible momenta remain.

8. Examples and sum rules

In this section we give examples for the $\theta, 6-j$ and $9-j$ coefficients. It will appear that among the full $p_{n}-J$ symbol that satisfy all triangular conditions usually a large number are zero because the co-momenta fail to be non-negative integers. In the formula of hidden momenta for structurally different $3 n-j$ coefficients with the same n, a visible momentum in one coefficient can appear as hidden in another. This increases our confidence that hidden momenta have physical meaning and are not merely summation variables. This also results in sum rules, equations (28), (34), (57) and (59) below. We have found no reference for these sum rules which could also be derived from the combinatorial and graphical techniques in Jucys and Bandzaitis [9, equations (14.3) and (35.4)].

8.1. The θ coefficient

The θ coefficient $\theta_{j_{1} j_{2} j_{3}}$ corresponds to the projective line $\operatorname{PG}(1,2)$. Its co-momenta are the three numbers involved in the triangular conditions (3); there is no hidden momentum. The full 3- J symbol of $\operatorname{PG}(1,2)$, denoted $\left\langle j_{1} j_{2} j_{3}\right\rangle$, is

$$
\begin{equation*}
\left\langle j_{1} j_{2} j_{3}\right\rangle=\frac{(-)^{j_{1}+j_{2}+j_{3}}}{\left(\Delta_{j_{1} j_{2} j_{3}}\right)^{2}} \tag{25}
\end{equation*}
$$

when triangular conditions (3) are satisfied, and 0 otherwise. Equation (23) contains no summation:

$$
\begin{equation*}
\theta_{j_{1} j_{2} j_{3}}=\left(\Delta_{j_{1} j_{2} j_{3}}\right)^{2}(-)^{j_{1}+j_{2}+j_{3}}\left\langle j_{1} j_{2} j_{3}\right\rangle \tag{26}
\end{equation*}
$$

The degenerate projective space $\operatorname{PG}(0,2)$, consisting of only one point, can be considered to correspond to a degenerate $3 n-j$ (for $n=0$) with an angular momentum graph formed of one single loop j and value $\{j\}=2 j+1$. There is one co-momentum $l=2 j$, and equations (22)-(24) apply if we put $\langle j\rangle=(-)^{2 j}(2 j+1)$ for the full $1-J$ symbol of $\mathrm{PG}(0,2)$, $\epsilon_{1}=-1$ for the sign of the non-zero cycle and $N=1$ for the normalizing factor.

The composite angular momentum graph $\left\{j_{1}\right\}\left\{j_{2}\right\}$ formed of two loops j_{1} and j_{2} appears as embedded in the line $\operatorname{PG}(1,2)$ with a hidden momentum j_{3}. The formula of hidden momenta equation (23), which reads

$$
\begin{equation*}
\left\{j_{1}\right\}\left\{j_{2}\right\}=\sum_{j_{3}}(-)^{2 j_{1}+2 j_{2}}\left\langle j_{1} j_{2} j_{3}\right\rangle \tag{27}
\end{equation*}
$$

can be considered as a sum rule for the θ coefficient:

$$
\begin{equation*}
\sum_{j_{3}} \frac{(-)^{j_{3}-j_{1}-j_{2}} \theta_{j_{1} j_{2} j_{3}}}{\left(\Delta_{j_{1} j_{2} j_{3}}\right)^{2}}=\left\{j_{1}\right\}\left\{j_{2}\right\}=\left(2 j_{1}+1\right)\left(2 j_{2}+1\right) . \tag{28}
\end{equation*}
$$

It can be remarked that, in the full $3-J$ symbol, j_{3} is a visible momentum in equation (26) but a hidden momentum in equation (27).

8.2. The $6-j$ and $6-j^{\prime}$ coefficients

Using the same display of momenta as in figure 2 , we have for the full $7-J$ symbol of PG(2, 2)

$$
\left\langle\begin{array}{ccc}
j_{4} & j_{3} & j_{5} \tag{29}\\
j_{2} & j_{7} & j_{1} \\
j_{6} & j_{1}
\end{array}\right\rangle=\frac{(-)^{|l|}(|l|+1)!}{l_{1}!l_{2}!\ldots l_{7}!}
$$

when all co-momenta (equation (20)) are non-negative integers, and 0 otherwise. The formula of hidden momenta equation (23) is for the $6-j$

$$
\left\{\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \tag{30}\\
j_{4} & j_{5} & j_{6}
\end{array}\right\}=\Delta_{j_{1} j_{2} j_{3}} \Delta_{j_{1} j_{5} j_{6}} \Delta_{j_{2} j_{4} j_{6}} \Delta_{j_{3} j_{4} j_{5}} \sum_{j_{7}}\left\langle\begin{array}{ccc}
j_{4} & j_{3} & j_{5} \\
j_{2} & j_{7} & j_{1} \\
j_{6} & j_{1}
\end{array}\right\rangle
$$

where the summation over the hidden momentum j_{7} is limited by the triangular conditions $j_{1} j_{4} j_{7}, j_{2} j_{5} j_{7}$ and $j_{3} j_{6} j_{7}$. Moreover, from the form of equation (20), only values of j_{7} varying with step of 2 will correspond to integer co-momenta and contribute to the sum. Equation (30) is equivalent to the combinatorial formula of Racah [19, equation (36)] which reads, when transcribed in our notations,
$\left\{\begin{array}{lll}j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6}\end{array}\right\}=\Delta_{j_{1} j_{2} j_{3}} \Delta_{j_{1} j_{5} j_{6}} \Delta_{j_{2} j_{4} j_{6}} \Delta_{j_{3} j_{4} j_{5}} \sum_{z} \frac{1}{\left(j_{1}+j_{2}-j_{3}-z\right)!\left(j_{4}+j_{5}-j_{3}-z\right)!}$
$\times \frac{(-)^{j_{1}+j_{2}+j_{4}+j_{5}-z}\left(j_{1}+j_{2}+j_{4}+j_{5}-z+1\right)!}{\left(j_{1}+j_{5}-j_{6}-z\right)!\left(j_{2}+j_{4}-j_{6}-z\right)!z!\left(j_{3}+j_{6}-j_{1}-j_{4}+z\right)!\left(j_{3}+j_{6}-j_{2}-j_{5}+z\right)!}$
where z runs over integer values such that all factorials have non-negative arguments. Indeed, equation (31) becomes algebraically identical to equation (30) when the sum over z is changed to a sum over j_{7} by identifying z with co-momentum l_{3}, that is by putting

$$
\begin{equation*}
z=\left(j_{1}+j_{2}-j_{3}+j_{4}+j_{5}-j_{6}-j_{7}\right) / 2 \tag{32}
\end{equation*}
$$

The formula of hidden momenta gives thus an entirely new perspective on Racah formula, revealing that it is not merely a combinatorial expression.

The formula of hidden momenta for the $6-j^{\prime}$ (with two momenta equal to j_{6}) is

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{6} \tag{33}\\
j_{4} & j_{5} & j_{6}
\end{array}\right\}^{\prime}=\left(\Delta_{j_{1} j_{5} j_{6}} \Delta_{j_{2} j_{4} j_{6}}\right)^{2} \sum_{j_{3}, j_{7}}\left\langle\begin{array}{ccc}
j_{4} & j_{3} & j_{5} \\
j_{2} & j_{7} & j_{6}
\end{array}\right\rangle .
$$

Comparing equations (30), (33) and (4), we get the sum rule:

$$
\begin{align*}
\sum_{j_{3}} \frac{1}{\Delta_{j_{1} j_{2} j_{3}} \Delta_{j_{3} j_{4} j_{5}}}\left\{\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right\} & =\frac{1}{\Delta_{j_{1} j_{5} j_{6}} \Delta_{j_{2} j_{4} j_{6}}}\left\{\begin{array}{ccc}
j_{1} & j_{2} & j_{6} \\
j_{4} & j_{5} & j_{6}
\end{array}\right\}^{\prime} \\
& =\frac{(-)^{j_{1}+j_{2}+j_{4}+j_{5}} \theta_{j_{1} j_{5} j_{6}} \theta_{j_{2} j_{4} j_{6}}}{\left(2 j_{6}+1\right) \Delta_{j_{1} j_{5} j_{6}} \Delta_{j_{2} j_{4} j_{6}}} \tag{34}
\end{align*}
$$

Let us now examine the fact that, even when the hidden momenta satisfy all triangular conditions, the co-momenta are not necessarily non-negative integers. The 66 sets of values of hidden momenta j_{3}, j_{7} of the $6-j^{\prime}$

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{6} \tag{35}\\
j_{4} & j_{5} & j_{6}
\end{array}\right\}^{\prime}=\left\{\begin{array}{ccc}
5 & \frac{9}{2} & 4 \\
\frac{13}{2} & 6 & 4
\end{array}\right\}^{\prime}
$$

which satisfy the triangular conditions are displayed in figure 14 . The full $7-J$ symbol is different from zero only for the 24 sets of values indicated by full circles ' \bullet '.

Figure 14. The values of hidden momenta j_{3}, j_{7} of the $6-j^{\prime}$ coefficient. Values satisfying triangular conditions are represented: the full circles correspond to non-negative integer comomenta, the open circles O to integer co-momenta some of which are negative and small dots \ddots ' to non-integer co-momenta. The rectangle corresponds to non-negative co-momenta.

Let $j_{3}^{(0)}, j_{7}^{(0)}$ be a particular set of hidden momenta that correspond to integer co-momenta and put

$$
\begin{equation*}
j_{3}=j_{3}^{(0)}+x_{1} \quad j_{7}=j_{7}^{(0)}+x_{2} \tag{36}
\end{equation*}
$$

We see from triangular conditions that the shift vector $\left(x_{1}, x_{2}\right)$ has integer components and from equation (20) that shift vectors corresponding to integer co-momenta form the square lattice defined by:

$$
\begin{align*}
\left\{\left(x_{1}, x_{2}\right):\right. & x_{1} \text { and } x_{2} \text { are both even integers or } \\
& \left.x_{1} \text { and } x_{2} \text { are both odd integers }\right\} . \tag{37}
\end{align*}
$$

An example of generator matrix (see Conway and Sloane [20]) for the lattice is $M=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$. The two row-vectors of M form a basis of the square lattice and the shift vectors are given by $\left(x_{1}, x_{2}\right)=z M$ where $z=\left(z_{1}, z_{2}\right)$ is a vector with integer components. In figure 14 this lattice (after a shift of origin) is represented by full or open circles.

Finally, let us determine on what condition the co-momenta are all non-negative. From equation (20), this is

$$
\begin{align*}
& \left|j_{1}-j_{2}-j_{4}+j_{5}\right|+j_{6} \leqslant j_{7}+j_{3} \leqslant j_{1}+j_{2}+j_{4}+j_{5}-j_{6} \\
& \left|j_{1}+j_{2}-j_{4}-j_{5}\right|-j_{6} \leqslant j_{7}-j_{3} \leqslant-\left|j_{1}-j_{2}+j_{4}-j_{5}\right|+j_{6} \tag{38}
\end{align*}
$$

meaning that the hidden momenta belong to the rectangle in figure 14.

Table 1. Description of the projective geometry $\mathcal{P}=\mathrm{PG}(3,2)$ of the $9-j$ coefficient.

		j_{6}	j_{8}	r_{1}	j_{5}	j_{4}	j_{2}	q_{3}	j_{9}	j_{3}	j_{7}	q_{2}	q_{1}	r_{3}	r_{2}	j_{1}	
		ϵ	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
l_{1}	0001	-1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
l_{2}	0010	-	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
l_{3}	0011	+	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
l_{4}	0100	-	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
l_{5}	0101	-	1	0	1	1	0	1	0	0	1	0	1	1	0	1	0
l_{6}	0110	-	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0
l_{7}	0111	-	1	1	0	1	0	0	1	0	1	1	0	1	0	0	1
l_{8}	1000	-	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
l_{9}	1001	-	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0
l_{10}	1010	-	0	1	1	0	0	1	1	1	1	0	0	1	1	0	0
l_{11}	1011	-1	1	0	0	1	1	0	1	0	0	1	1	0	0	1	
l_{12}	1100	-	0	0	1	1	1	1	1	1	1	1	0	0	0	0	
l_{13}	1101	+1	0	1	1	0	1	0	1	0	1	0	0	1	0	1	
l_{14}	1110	+	0	1	1	1	1	0	0	1	1	0	0	0	0	1	1
l_{15}	1111	-1	1	0	1	0	0	1	1	0	0	1	0	1	1	0	

8.3. The 9-j coefficient

The description of the projective geometry $\mathcal{P}=\operatorname{PG}(3,2)$ (and its dual $\mathcal{P}^{*}=\operatorname{PG}\left(3^{*}, 2\right)$) of the $9-j$ coefficient is summarized in table 1 . The rows (resp. columns) of the table are associated with points of \mathcal{P}^{*} (resp. \mathcal{P}). The entry $a_{i k}$ in row $i=x y z t$ and column $k=\lambda \mu \nu \rho$ has value $\lambda x+\mu y+\nu z+\rho t \in \mathbb{F}_{2}$.

The assignment of momenta (the nine visible momenta $j_{1}, j_{2}, \ldots, j_{9}$ of the $9-j$ and the six hidden momenta $\left.q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}\right)$ to points of \mathcal{P} is the same as in figure 3 .

The cycles of the $9-j$ are given by the rows of the table. For example, the first row represents the point 0001 of \mathcal{P}^{*} identified with the cycle $\left(j_{6}, j_{4}, j_{3}, j_{1}\right)$ formed of momenta corresponding to entries of 1 (disregarding the hidden momenta r_{1}, q_{3}, q_{2} and r_{3}).

The hyperplanes (Fano planes) of \mathcal{P}^{*} are given by the columns of the table. For example, the first column represents the point $\lambda \mu \nu \rho=0001$ of \mathcal{P} and the hyperplane of equation $\lambda x+\mu y+\nu z+\rho t=0$ formed of points 0010, 0100, 0110, 1000, 1010, 1100 and 1110 of \mathcal{P}^{*} corresponding to zero entries in the table.

Similarly, the hyperplanes of \mathcal{P} are given by the rows of the table. For example, the points of the shaded hyperplane in figure 3 correspond to the zero entries of row 1000 of the table.

The characters are given by $\chi_{k}(i)=-1\left(\right.$ resp. $\left.\chi_{k}(i)=1\right)$ when entry $a_{i k}=1$ (resp. $a_{i k}=0$).

The expression of the momenta in terms of co-momenta, equation (13), is read from the columns of the table. For example, the first column gives

$$
\begin{equation*}
j_{6}=\left(l_{1}+l_{3}+l_{5}+l_{7}+l_{9}+l_{11}+l_{13}+l_{15}\right) / 2 \tag{39}
\end{equation*}
$$

where each term corresponds to an entry of 1 in the table.
The expression of the co-momenta in terms of momenta, equation (18), is read from the rows of the table. For example, the first row gives
$l_{1}=\left(+j_{6}-j_{8}+r_{1}-j_{5}+j_{4}-j_{2}+q_{3}-j_{9}+j_{3}-j_{7}+q_{2}-q_{1}+r_{3}-r_{2}+j_{1}\right) / 4$
where $\mathrm{a}+($ resp. -$)$ sign corresponds to an entry of 1 (resp. 0) in the table.

The sign of the cycles is $\epsilon_{i}=1$ for the three collinear cycles forming line $d=$ $(0011,1101,1110)$ of \mathcal{P}^{*} and $\epsilon_{i}=-1$ for the other 12 non-zero cycles. The phase factor $(-)^{t(X)}$ equation (24) can be expressed in terms of the momenta: the sum of co-momenta l_{i} with $\epsilon_{i}=-1$

$$
\begin{equation*}
t(X)=q_{1}+q_{2}+q_{3} \tag{41}
\end{equation*}
$$

turns out to be the sum of the momenta on the dual line of d, a result that can be understood geometrically by the same method as for equation (15).
8.3.1. The 35 lines. Let us give some geometric properties of the lines of \mathcal{P}. The set \mathcal{H} of the nine points $j_{1}, j_{2}, \ldots, j_{9}$ of \mathcal{P} is the set of points that satisfy the quadratic equation $\lambda \mu=\nu \rho$. The figure \mathcal{H} representing the $9-j$ is a hyperboloid. The 35 lines of \mathcal{P} can be classified with respect to \mathcal{H} as follows.

- Six are the interior lines which are contained in \mathcal{H} and correspond to the triangular conditions of the $9-j$ (these lines are also considered to be tangents of \mathcal{H}):

$$
\begin{array}{lll}
j_{1} j_{2} j_{3} & j_{4} j_{5} j_{6} & j_{7} j_{8} j_{9} \tag{42}\\
j_{1} j_{4} j_{7} & j_{2} j_{5} j_{8} & j_{3} j_{6} j_{9}
\end{array}
$$

- Nine are tangents of \mathcal{H} that have just one point in common with \mathcal{H} :

$j_{1} q_{1} r_{1}$	$j_{2} q_{2} r_{3}$	$j_{3} q_{3} r_{2}$
$j_{4} q_{2} r_{2}$	$j_{5} q_{3} r_{1}$	$j_{6} q_{1} r_{3}$
$j_{7} q_{3} r_{3}$	$j_{8} q_{1} r_{2}$	$j_{9} q_{2} r_{1}$.

- 18 are the secants of \mathcal{H}, having exactly two points in common with \mathcal{H} :

$j_{2} j_{7} q_{1}$	$j_{1} j_{5} q_{2}$	$j_{1} j_{9} q_{3}$	$j_{2} j_{4} r_{1}$	$j_{1} j_{6} r_{2}$	$j_{1} j_{8} r_{3}$
$j_{3} j_{4} q_{1}$	$j_{3} j_{8} q_{2}$	$j_{2} j_{6} q_{3}$	$j_{3} j_{7} r_{1}$	$j_{2} j_{9} r_{2}$	$j_{3} j_{5} r_{3}$
$j_{5} j_{9} q_{1}$	$j_{6} j_{7} q_{2}$	$j_{4} j_{8} q_{3}$	$j_{6} j_{8} r_{1}$	$j_{5} j_{7} r_{2}$	$j_{4} j_{9} r_{3}$.

- Two are the exterior lines of \mathcal{H}, having no point in common with \mathcal{H} :

$$
\begin{equation*}
q_{1} q_{2} q_{3} \quad r_{1} r_{2} r_{3} \tag{45}
\end{equation*}
$$

Through each point of \mathcal{H} there are three tangents (among which two interior lines) and four secants. The tangent space at a point of \mathcal{H} is the Fano plane containing the tangents through that point. For example, the shaded hyperplane in figure 3 is the tangent space at point j_{5}.

Through each point of $\mathcal{P} \backslash \mathcal{H}$ there are three secants, three tangents and one exterior line.
8.3.2. The formula of hidden momenta for the $9-j$. We have, for the full $15-J$ symbol,

$$
\left\langle\begin{array}{llllll}
j_{1} & j_{2} & j_{3} & q_{1} & q_{2} & q_{3} \tag{46}\\
j_{4} & j_{5} & j_{6} & r_{1} & r_{2} & r_{3} \\
j_{7} & j_{8} & j_{9} & r_{1} & (-)^{|l|}(|l|+1)! \\
l_{1}!l_{2}!\ldots l_{15}! &
\end{array}\right.
$$

when all co-momenta (given by equations like equation (40)) are non-negative integers, and 0 otherwise.

The formula of hidden momenta for the $9-j$ coefficient is the six-fold summation formula:

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \tag{47}\\
j_{4} & j_{5} & j_{6} \\
j_{7} & j_{8} & j_{9}
\end{array}\right\}=N \sum_{\substack{q_{1} q_{2} q_{3} \\
r_{1} r_{2} r_{3}}}(-)^{q_{1}+q_{2}+q_{3}}\left\langle\begin{array}{llllll}
j_{1} & j_{2} & j_{3} & q_{1} & q_{2} & q_{3} \\
j_{4} & j_{5} & j_{6} & q_{1} & q_{2} & r_{1} \\
j_{7} & j_{8} & j_{9} & & & r_{2}
\end{array}\right\rangle
$$

with the normalizing factor

$$
\begin{equation*}
N=\Delta_{j_{1} j_{2} j_{3}} \Delta_{j_{4} j_{5} j_{6}} \Delta_{j_{7} j_{8} j_{9}} \Delta_{j_{1} j_{4} j_{7}} \Delta_{j_{2} j_{5} j_{8}} \Delta_{j_{3} j_{6} j_{9}} \tag{48}
\end{equation*}
$$

and summation limited to hidden momenta satisfying the 29 triangular conditions in equations (43)-(45). In this formula we have used equation (41) in the expression of the phase factor, but, since the co-momenta have to be integers, we can replace $(-)^{q_{1}+q_{2}+q_{3}}$ by equivalent forms, such as $(-)^{t^{\prime}(X)}$ with

$$
\begin{equation*}
t^{\prime}(X)=q_{1}+q_{2}+q_{3}-2 l_{1}+2 l_{13}=j_{2}-j_{3}-j_{4}+j_{5}+j_{7}+j_{9}+q_{1} \tag{49}
\end{equation*}
$$

As in the case of the $6-j^{\prime}$, there are hidden momenta that correspond to non-integer comomenta, even when all triangular conditions equations (43)-(45) are satisfied. We define as before the shift vector $\left(x_{1}, x_{2}, \ldots, x_{6}\right)$ with integer components by

$$
\begin{array}{lcc}
q_{1}=q_{1}^{(0)}+x_{1} & q_{2}=q_{2}^{(0)}+x_{2} & q_{3}=q_{3}^{(0)}+x_{3} \\
r_{1}=r_{1}^{(0)}+x_{4} & r_{2}=r_{2}^{(0)}+x_{5} & r_{3}=r_{3}^{(0)}+x_{6} \tag{50}
\end{array}
$$

where $q_{1}^{(0)}, \ldots, r_{3}^{(0)}$ is a set of hidden momenta that corresponds to integer co-momenta. Shift vectors corresponding to integer co-momenta form the lattice D_{6}^{+}defined by:

$$
\begin{align*}
& \left\{\left(x_{1}, x_{2}, \ldots, x_{6}\right): \text { all } x_{i} \text { even integers or all } x_{i}\right. \text { odd integers, } \\
& \left.\qquad \sum_{i=1}^{6} x_{i} \equiv 0 \quad(\bmod 4)\right\} \tag{51}
\end{align*}
$$

An example of generator matrix for the lattice is

$$
M=\left(\begin{array}{cccccc}
2 & 2 & 2 & 2 & 2 & 2 \tag{52}\\
-1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1 & 1 \\
1 & 1 & -1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & 1
\end{array}\right)
$$

The shift vectors are given by $\left(x_{1}, x_{2}, \ldots, x_{6}\right)=z M$ where $z=\left(z_{1}, z_{2}, \ldots, z_{6}\right)$ is a vector with integer components. A fundamental cell of the lattice, containing only one shift vector, has volume $\operatorname{det} M=64$. It results that usually in equation (47) a large fraction of the summed terms are zero because the corresponding co-momenta are non-integers. The hidden momenta are further limited to the polytope in six dimensions (generalizing the rectangle in figure 14) defined by $l_{i} \geqslant 0(i=1,2, \ldots, 15)$. For example, for the $9-j$ coefficient $\left\{\begin{array}{ccc}3 & 4 & 5 \\ 6 & 7 & 8 \\ 9 & 10 & 11\end{array}\right\}$ there are 25564 sets of hidden momenta that satisfy all triangular conditions, 426 of which correspond to integer co-momenta. Moreover, among these 426 sets only eight sets correspond to non-negative co-momenta and so to non-zero terms in the summation of equation (47).

Various six-fold summation formulae for the $9-j$ have been given by Wu [21]. They are based on a generating function for the $9-j$, first obtained by Schwinger [22] in a creation and annihilation operator approach, and then rederived by Wu using a formalism from Bargmann [23]. The combinatorial formula equation (11) of the $3 n-j$ coefficient used in this paper derives from a generating function which for the $9-j$ is the same as that of Schwinger. It results that these various six-fold summation formulae are equivalent to equation (47) in the sense that the non-zero terms that are summed are the same in all formulae. Here again,

Figure 15. The $9-j^{\prime}$ coefficient.
as in the case of Racah formula, the formula of hidden momenta adds physical meaning to these combinatorial expressions.
8.3.3. The 9-j coefficient of the second kind. The 9- j^{\prime} coefficient (9-j coefficient of the second kind) defined by figure 15 is a product of two $6-j$ coefficients:

$$
\left\{\begin{array}{lll}
q_{1} & j_{2} & j_{3} \tag{53}\\
j_{4} & j_{5} & j_{6} \\
j_{7} & j_{8} & j_{9}
\end{array}\right\}^{\prime}=\left\{\begin{array}{lll}
j_{2} & j_{7} & q_{1} \\
j_{9} & j_{5} & j_{8}
\end{array}\right\}\left\{\begin{array}{lll}
j_{3} & j_{4} & q_{1} \\
j_{5} & j_{9} & j_{6}
\end{array}\right\} .
$$

We have labelled the momenta so that this $9-j^{\prime}$ is embedded in \mathcal{P} as in figure 3 and table 1 , but now the visible momenta are $q_{1}, j_{2}, j_{3}, \ldots, j_{9}$ and the hidden momenta are j_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}, so that momenta j_{1} and q_{1} have swapped the visible/hidden attributes they had in the $9-j$. The full $15-J$ symbol is still given by equation (46) and the cycles by table 1 . For example, point 0001 of \mathcal{P}^{*} is associated with cycle $\left(j_{6}, j_{4}, j_{3}\right)$. The signs of the cycles are now $\epsilon_{i}=1$ for the three collinear cycles $i=0001,0010,0011$ and $\epsilon_{i}=-1$ for the other 12 non-zero cycles. The phase factor $(-)^{t(X)}$ is independent of the hidden momenta:

$$
\begin{equation*}
t(X)=q_{1}+j_{5}+j_{9} \tag{54}
\end{equation*}
$$

The formula of hidden momenta for the $9-j^{\prime}$ coefficient is the six-fold summation formula:

$$
\left\{\begin{array}{lll}
q_{1} & j_{2} & j_{3} \tag{55}\\
j_{4} & j_{5} & j_{6} \\
j_{7} & j_{8} & j_{9}
\end{array}\right\}^{\prime}=N^{\prime}(-)^{q_{1}+j_{5}+j_{9}} \sum_{\substack{j_{1} q_{2} q_{3} \\
r_{1} r_{2} r_{3}}}\left(\begin{array}{lllll}
j_{1} & j_{2} & j_{3} & q_{1} & q_{2} \\
j_{4} & j_{5} & j_{6} & q_{1} & q_{2} \\
j_{7} & j_{8} & j_{9} & r_{1} & r_{2}
\end{array} r_{3}\right\rangle
$$

with the normalizing factor

$$
\begin{equation*}
N^{\prime}=\Delta_{j_{2} j_{7} q_{1}} \Delta_{j_{3} j_{4} q_{1}} \Delta_{j_{2} j_{5} j_{8}} \Delta_{j_{3} j_{6} j_{9}} \Delta_{j_{4} j_{5} j_{6}} \Delta_{j_{7} j_{8} j_{9}} \tag{56}
\end{equation*}
$$

Comparing with equation (47), used with expression equation (49) instead of $q_{1}+q_{2}+q_{3}$ in the phase factor, we get the sum rule:

$$
\sum_{j_{1}} \frac{1}{\Delta_{j_{1} j_{2} j_{3}} \Delta_{j_{1} j_{4} j_{7}}}\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6} \\
j_{7} & j_{8} & j_{9}
\end{array}\right\}
$$

Figure 16. The graph G_{a} of the $3 n-j$ coefficient $\{U, a\}$. Figure 17. The graph G_{b} of the $3 n-j$ coefficient $\{U, b\}$.

$$
=(-)^{j_{2}-j_{3}-j_{4}+j_{7}} \sum_{q_{1}} \frac{1}{\Delta_{j_{2} j_{7} q_{1}} \Delta_{j_{3} j_{4} q_{1}}}\left\{\begin{array}{ccc}
j_{2} & j_{7} & q_{1} \tag{57}\\
j_{9} & j_{5} & j_{8}
\end{array}\right\}\left\{\begin{array}{ccc}
j_{3} & j_{4} & q_{1} \\
j_{5} & j_{9} & j_{6}
\end{array}\right\} .
$$

8.4. A sum rule

The sum rules, equations (28), (34) and (57), can be generalized to a sum rule relating the $3 n-j$ coefficients depicted in figures 16 and 17. The graphs G_{a} and G_{b} have an identical part (box B and edges $j_{5}, j_{1}, j_{2}, j_{4}$) excepted that orientations of edge j_{5} are opposite. They generalize figures 5 and 7 by replacing edge j_{6} and its two adjacent vertices by box B and renaming j_{3} as a or b. We denote the $3 n-j$ by $\{U, a\}$ and $\{U, b\}$ where U is the set of common angular momenta. Both $3 n-j$ can be embedded in the same projective space $\operatorname{PG}(n, 2)$. Let us first suppose that no two momenta are associated to the same point of $\operatorname{PG}(n, 2)$. We have then a full $p_{n}-J$ symbol $\langle U, a, b, H\rangle$ where visible momentum a of $\{U, a\}$ also appears as a hidden momentum of $\{U, b\}$ and where we denote by H the set of the common hidden momenta.

The cycles of the two graphs are completely defined by their edges on U. It is easily checked that the sign of a cycle of G_{a} is the same as the sign of the cycle of G_{b} that has the same edges on U. (Some of the cases to be considered occur in figures 8 and 9 , where cycles $e_{i}(i=1, \ldots, 7)$ with the same i have the same edges on $U=\left\{j_{1}, j_{2}, j_{4}, j_{5}, j_{6}\right\}$.) The $3 n-j$ are thus given by the formula of hidden momenta as

$$
\begin{align*}
& \{U, a\}=\Delta_{a j_{1} j_{2}} \Delta_{a j_{4} j_{5}} N_{B} \sum_{H, b}(-)^{t}\langle U, a, b, H\rangle \\
& \{U, b\}=\Delta_{b j_{1} j_{5}} \Delta_{b j_{2} j_{4}} N_{B} \sum_{H, a}(-)^{t}\langle U, a, b, H\rangle \tag{58}
\end{align*}
$$

with the same phase factor and where N_{B} is a product of common triangle factors. From these equations we obtain the sum rule relating the $3 n-j$ coefficients in figures 16 and 17:

$$
\begin{equation*}
\sum_{a} \frac{1}{\Delta_{a j_{1} j_{2}} \Delta_{a j_{4} j_{5}}}\{U, a\}=\sum_{b} \frac{1}{\Delta_{b j_{1} j_{5}} \Delta_{b j_{2} j_{4}}}\{U, b\} . \tag{59}
\end{equation*}
$$

This sum rule remains valid when momentum b is associated to the same point of $\operatorname{PG}(n, 2)$ as another momentum (as in figure 11): the sum on b is then reduced to one term only as in equation (34).

9. Concluding remarks

The full $p_{n}-J$ symbol (22) is highly symmetric. It is invariant in the p_{n} ! permutations of the co-momenta. In the space of momenta, these symmetries form a group of linear
transformations. A subgroup of these symmetries consists of the collineations, which permute points and lines, both in $\operatorname{PG}(n, 2)$ and its dual, thus conserving the set of values of the momenta as well as the set of their triangular relations.

For the $6-j$, among the $7!=5040$ symmetries, 144 leave j_{7} fixed at the same point in $\mathrm{PG}(2,2)$: these are the Regge [24] symmetries of the $6-j$. Among these, 6×4 are collineations that correspond to the 24 geometric symmetries of the tetrahedron (figure 5).

We give a state model interpretation of the full $p_{n}-J$ symbol (22) and of the co-momenta inspired by the chromatic method of evaluating Penrose spin networks (see Penrose [25], Moussouris [26] and Kauffman [27]). Let us consider a system of $|l|$ identical objects that are partitioned in p_{n} boxes, box i containing l_{i} objects $\left(i=1,2, \ldots, p_{n}\right)$. The co-momenta l_{i} thus appear as occupation numbers. We have available $c \geqslant|l|$ colours to paint the objects. We call a state of the system a colouring of the $|l|$ objects such that no two objects have the same colour. The number of states of this system is

$$
\begin{equation*}
P(X, c)=\frac{c(c-1) \ldots(c-|l|+1)}{\prod_{i=1}^{p_{n}} l_{i}!} . \tag{60}
\end{equation*}
$$

Considered in terms of variable c for given X, equation (60) defines a polynomial that takes integer values when c is a positive or negative integer. Evaluating the polynomial at $c=-2$, which corresponds to the 'number of colours' of spin networks, yields the full $p_{n}-J$ symbol (22).

For $\theta, 6-j$ and $9-j$ coefficients, the chromatic method of evaluating spin networks, based on circuit decompositions gives a formula similar to equation (11), based on cycle decompositions. The two formulae differ for the other $3 n-j$ coefficients, when a cycle can be composed of several circuits as in figure 9. Instead of the simple expression (60) for a cycle configuration, the chromatic polynomial for a circuit configuration has a more complex expression. This becomes important when one considers the generalization of the $3 n-j$ to quantum group $q-3 n-j$ coefficients. The principle of replacing factorials k ! by quantum integer factorials $[k]$! is useful for guessing the quantum formula of the $q-3 n-j$. Kauffman and Lins [28, pp 91-2] pointed out that the quantization of the chromatic polynomial to higher $q-3 n-j$ was not clear. With our method of cycle decompositions, equation (22) has the same structure for all $3 n-j$, so that we have a way to quantize the general formula of the $3 n-j$.

Let us rewrite diagram (1) as

co-momentum object	duality
\longleftrightarrow	angular-momentum object hidden part of angular-momentum object

We have seen the validity of such a diagram when the angular-momentum object is a $3 n-j$. When the angular-momentum object is a spin- j elementary particle state $|j m\rangle$, it makes sense to suppose that there is no hidden part and that the co-momenta are $\lambda=j+m$, $\mu=j-m$, usually interpreted as occupation numbers of two-oscillator states $|\lambda \mu\rangle$. We can imagine that, for a system of elementary particles, the hidden part of diagram (61) appears after couplings and recouplings of the single-particle states. The formula in Racah [19, equation (16)] for the $3-j$ coefficient (Clebsch-Gordan) can be interpreted as a summation over a hidden projection angular momentum, but we have not yet obtained a clear interpretation for the general angular momentum graph with free edges (projection
angular momenta). Another open question is what these hidden structures are, if they exist, for atomic and nuclear shells and their matrix elements.

References

[1] Wigner E P 1931 Gruppentheorie und ihre Anwendung auf die Quantummechanik der Atomspectren (Braunschweig: Vieweg) (Engl. transl. Griffin J J 1959 Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (New York: Academic))
[2] Fano U and Racah G 1959 Irreducible Tensorial Sets (New York: Academic)
[3] Biedenharn L C and Louck J D 1981 The Racah-Wigner Algebra in Quantum Theory (Encyclopedia of Mathematics and its Applications 9) (Reading, MA: Addison-Wesley)
[4] Levinson I B 1957 Sums of products of Wigner coefficients and their graphical representations Tr. Fizikotekhn. Inst. Akad. Nauk Litobskoi SSR 2 17-30 (Vilnius)
[5] Yutsis A P, Levinson I B and Vanagas V V 1962 The Theory of Angular Momentum (Jerusalem: Israel Program for Scientific Translations)
Yutsis A P, Levinson I B and Vanagas V V 1964 The Theory of Angular Momentum (New York: Gordon and Breach)
[6] Barbieri A 1998 Quantum tetrahedra and simplicial spin networks Nucl. Phys. B 518 714-28
[7] Robinson G De B 1970 Group representations and geometry J. Math. Phys. 11 3428-32
[8] Labarthe J J 1975 Generating functions for the coupling-recoupling coefficients of $\mathrm{SU}(2)$ J. Phys. A: Math. Gen. 8 1543-61
[9] Jucys A P and Bandzaitis A A 1965 Teoriia Momenta Kolichesttva Dvizheniia v Kvantovoi Mekhanike (Vilnius: Mintis)
Jucys A P and Bandzaitis A A 1977 Teoriia Momenta Kolichesttva Dvizheniia v Kvantovoi Mekhanike 2nd edn (Vilnius: Mokslas)
[10] Brink D M and Satchler G R 1968 Angular Momentum 2nd edn (Oxford: Oxford University Press)
[11] Elbaz E 1985 Algèbre de Racah et Analyse Vectorielle Graphiques (Paris: Ellipses)
[12] Varshalovich D A, Moskalev A N and Khersonskii V K 1988 Quantum Theory of Angular Momentum (Singapore: World Scientific)
[13] Diestel R 1997 Graph Theory (New York: Springer)
[14] Biggs N 1974 Algebraic Graph Theory (Cambridge: Cambridge University Press)
[15] Holton D A and Sheenhan J 1993 The Petersen Graph (Cambridge: Cambridge University Press)
[16] Tutte W T 1966 On the algebraic theory of graph colorings J. Comb. Theor. 1 15-50
[17] Conway J H assisted by Fung F Y C 1997 The Sensual (Quadratic) Form (Carus Mathematical Monographs) (Washington, DC: Mathematical Association of America)
[18] Fairlie D B and Ueno T 1998 Integrable top equations associated with projective geometry over \mathbb{Z}_{2} Preprint math-ph/9805007
[19] Racah G 1942 Theory of complex spectra. II Phys. Rev. 62 438-62
[20] Conway J H and Sloane N J A 1993 Sphere Packings, Lattices and Groups 2nd edn (New York: Springer)
[21] Wu A C T 1972 Structure of the Wigner 9-j coefficients in the Bargmann approach J. Math. Phys. 13 84-90
[22] Schwinger J 1952 On angular momentum AEC Report NYO-3071 reprinted in Biedenharn L C and Van Dam H 1965 Quantum Theory of Angular Momentum (New York: Academic) pp 229-79
[23] Bargmann V 1962 On the representation of the rotation group Rev. Mod. Phys. 34 829-45
[24] Regge T 1959 Symmetry properties of Racah's coefficients Nuovo Cimento 11 116-7
[25] Penrose R 1979 Advances in Twistor Theory ed L P Hughston and R S Ward (London: Pitman) pp 301-7
[26] Moussouris J P 1979 Advances in Twistor Theory ed L P Hughston and R S Ward (London: Pitman) pp 308-12 Moussouris J P 1979 Advances in Twistor Theory ed L P Hughston and R S Ward (London: Pitman) pp 313-17
[27] Kauffman L H 1991 Knots and Physics (Singapore: World Scientific)
[28] Kauffman L H and Lins S L 1994 Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (Annals of Mathematics Studies) (Princeton, NJ: Princeton University Press)

