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Abstract. The Racah formula for the SU(2) 6-j coefficient is usually considered as a pure
combinatorial formula. A physical interpretation is found for this formula and, more generally,
for combinatorial formulae of the 3n-j coefficients. Angular momenta are associated with
the pn points of the finite projective geometry PG(n, 2) where triangular conditions appear as
collinearities of points. A 3n-j coefficient corresponds to a subset of PG(n, 2) so that some
of thepn angular momenta are hidden for the 3n-j . The combinatorial formula of the 3n-j is
interpreted as the summation over these hidden angular momenta of a highly symmetric ‘full
pn-J symbol’.

1. Introduction

Many links between geometry and the theory of angular momentum in quantum mechanics
have long been known (Wigner [1], Fano and Racah [2], Biedenharn and Louck [3]). When
coupling two angular momentaj1 andj2 to form j3, we often think of the triplet (j1, j2, j3)
as a triangle with sides of lengthj1, j2 andj3 and speak oftriangular condition(euclidian
geometry). In theangular momentum graphsintroduced by Jucys (whose name is also
spelled Yutsis), Levinson and Vanagas [4, 5] the momenta are associated with edges and
triangular conditions with vertices (graph theory). The association of momenta to faces of
tetrahedra has been considered more recently by Barbieri [6] (simplicial geometry). In this
paper momenta will be associated with points and triangular conditions with collinearities
of points (projective geometry).

In Fano and Racah [2], the 6-j coefficient

{
j1 j2 j3

j4 j5 j6

}
is depicted by a complete

quadrilateral (figure 1), where the four triangular conditions correspond to the four lines.
This description has been used to interpret various relations between 6-j coefficients [2, 3].
Robinson [7], remarking that we are really interested in only three points of each line,
introduced the finite projective geometries PG(n, 2).

The finite projective space PG(2, 2), also known as the Fano plane (figure 2), contains
seven points and seven lines. Each line contains exactly three points (one line is depicted
as a circle in figure 2). PG(2, 2) is constructed from the three-dimensional vector space
F3

2 over the two-element fieldF2 = {0, 1}. The spaceF3
2 is formed of eight elements of

coordinates (λ, µ, ν) in the standard basis which we code by the binary numberλµν. The
seven non-zero elements ofF3

2 are identified with the points of PG(2, 2). Given two different
points e and e′ of PG(2, 2), there is exactly one line passing through these points and the
third point e′′ on the line corresponds to relatione + e′ + e′′ = 0 in F3

2. By placing the
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Figure 1. The 6-j coefficient in projective geometry. Figure 2. The Fano plane PG(2, 2) of momenta for the
6-j .

quadrilateral (figure 1) in figure 2, Robinson interpreted six of the seven points of PG(2, 2)
as a 6-j symbol.

In this paper we present an interpretation of the 6-j coefficient in terms ofall seven
points of PG(2, 2). The momenta of the 6-j are associated with six points of PG(2, 2)
as in Robinson and ahidden momentumis associated with the seventh point (point 111
in figure 2), thus forming a set of seven momenta and afull 7-J symbol. The hidden
momentum can take any value satisfying the triangular conditions represented by the three
lines passing through point 111. The dual projective space PG(2∗, 2) is a second Fano
plane. Points in one Fano plane are in duality relation with lines in the other Fano plane,
collinear points corresponding to concurrent lines. We associate one non-negative integer
to each of the seven points of PG(2∗, 2) that we call theco-momentumof that point. The
seven co-momenta are discrete Fourier transforms of the seven momenta. We define the
value of the full 7-J symbol as a simple expression which is invariant in all 7! permutations
of the co-momenta. The Racah formula for the 6-j coefficient is then interpreted as the
summation of the full 7-J symbol over all values of the hidden momentum.

We have obtained similar results for the general 3n-j coefficient, summarized by the
diagram:

co-momenta
duality←→

momenta

hidden momenta
(1)

As another example, the geometry of the 9-j coefficient is the three-dimensional 15-
point space PG(3, 2) (figure 3). Adding six hidden momenta to the 9-j we define a full
15-J symbol with 15! permutational symmetries in the space of co-momenta. The value of
the 9-j is obtained by a summation over the six hidden momenta of this full 15-J symbol
multiplied by a phase factor.

We begin by defining the 3n-j coefficient from its angular momentum graphG
(section 2). The cycles ofG (section 3) are used to define the spaces PG(n∗, 2) (section 4)
and PG(n, 2) (section 5). By using the combinatorial formula in Labarthe [8] we define the
co-momenta (section 6) and the fullpn-J symbol and derive our main result (section 7).
We then examine examples and show how to obtain sum rules for the 3n-j coefficients
(section 8). To conclude the paper we consider the interpretation of the fullpn-J symbol
(section 9).
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Figure 3. The PG(3, 2) geometry of the 9-j coefficient. Seven lines pass through each of the
15 points, but only some of the 35 lines are represented. One of the fifteen 2-subspaces (Fano
planes) is shaded.

2. Angular momentum graphs

A 3n-j coefficient is defined by its angular momentum graphG (see [9–12]). The graph
defines an invariant of SU(2) constructed from 3n momenta which label the edges.G is a
trivalent graph (three edges meet at each of the 2n vertices).

The 3n-j coefficient (n = 1) in figure 4 is theθ coefficient so named from its shape.
The graph defines the value of theθ coefficient as

θj1j2j3 =
∑

m1,m2,m3

(
j1 j2 j3

m1 m2 m3

)
(−)j1−m1+j2−m2+j3−m3

(
j1 j2 j3

−m1 −m2 −m3

)
. (2)

The left vertex in figure 4 corresponds to a coupling of the three angular momentaj1,
j2, j3 and to the first 3-j symbol in equation (2). The± sign at a vertex ofG fixes the
cyclic order of the momenta in the 3-j symbol in equation (2). The way the projection
numberm of momentumj and the phase factor appear in equation (2), as(· · · j

m
· · ·) and

(−)j−m(· · · j

−m · · ·), is fixed by the arrow on edgej . Changing the sign of a vertex (j1, j2, j3)
or the direction of an edgej multiplies the 3n-j by (−)j1+j2+j3 or (−)2j respectively. The
value ofθj1j2j3 is 1 when the set of momenta (j1, j2, j3) satisfies thetriangular conditions,
namely

j1+ j2− j3 j2+ j3− j1 and j3+ j1− j2 (3)

are non-negative integers, and 0 otherwise.
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Figure 4. The θ coefficient. Figure 5. The 6-j coefficient.
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Figure 6. The 9-j coefficient. Figure 7. The 6-j ′ coefficient.

The value of the general 3n-j coefficient is defined similarly by its graph. The 6-j

coefficient

{
j1 j2 j3

j4 j5 j6

}
is represented by the tetrahedron graph (figure 5) and the 9-j

coefficient

{
j1 j2 j3

j4 j5 j6

j7 j8 j9

}
is given by figure 6.

We shall also admit as a 3n-j (n = 2) the6-j of second kindin figure 7, which we call
6-j ′ and denote{

j1 j2 j3

j4 j5 j6

}′
= (−)j1+j2+j4+j5

2j6+ 1
θj1j5j6θj2j4j6δj3j6. (4)

3. The edge space and its cycle subspace

Let E be the set of the edges of graphG. For the 6-j coefficient the set of the edges is
E = {j1, j2, . . . , j6}, where we designate the edges by the same symbol as the momenta.
Theedge spaceE of the graph is the vector space over the two-element fieldF2 of functions
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Figure 8. The non-zero cycles of the 6-j coefficient.

E → F2. The support of a functionf ∈ E is the subsetF ⊆ E of the edgese ∈ E such
that f (e) = 1. We shall not distinguish between a function and its support. The sum of
two edge subsetsF,F ′ ⊆ E is then their symmetric difference(F \ F ′) ∪ (F ′ \ F).

A cycle of graphG is a subset of edges which form any number ofcircuits (for a
formal definition see for example Diestel [13]). For the 6-j coefficient, there are 8= 23

cycles, the seven cycles represented in figure 8 and the empty set (thezero cycle). Figure 9
gives the seven non-zero cycles of the 6-j ′ of figure 7. All non-zero cycles consist of one
circuit each, exceptede3 which is formed of two circuits. Given two cyclese1, e2 and
scalarsλ1, λ2 ∈ F2, the linear combinationλ1e1 + λ2e2 is a cycle: the cycles form the
cycle-subspaceC of E . The dimension ofC for a graph withc components,a vertices and
b edges isb− a + c (see Biggs [14]). For simplicity, we shall assume that the 3n-j graph
is connected (c = 1), but the exposition that follows remains valid withc > 1 components
if the coefficient is thought of as a ‘3(n + c − 1)-j ’ instead of a 3n-j . For example, a
composite graph of twoθ , though involving six angular momenta, should be considered as
a ‘9-j ’. For a 3n-j , the cycle-subspace is of dimensionn+ 1 and contains 2n+1 elements.

4. The projective space PG(n∗, 2)

Let us first consider the 6-j coefficient. A basis ofC is given by the cyclese5, e6, e7. We
code elementxe5+ ye6+ ze7 by the binary numberxyz (for examplee2 = e5+ e7 is coded
by 101). We identify the seven non-zero cyclesei (i = 1, 2, . . . ,7) of C with the Fano plane
PG(2∗, 2) (figure 10). Similar projective spaces have been considered for general graphs in
connection with the theory of graph colourings (see Holton and Sheenhan [15] and Tutte
[16]).

To generalize to any 3n-j we introduce the projective space PG(n∗, 2). The pn =
2n+1 − 1 points of this space are identified with the non-zero cycles of the 3n-j . The k-
subspacesof PG(n∗, 2) are the points (k = 0), the lines (k = 1), the planes (k = 2), . . . and
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Figure 9. The non-zero cycles of the 6-j ′ coefficient.

the hyperplanes (k = n− 1). They are projective subspaces of projective dimensionk, for
example each of thepn hyperplanes can be considered as a projective space PG(n − 1, 2)
of 2n − 1 points.

In the evaluation of the 6-j coefficient we shall need to know the cycles that contain
a given edge. For example edgej1 of the 6-j is contained in cyclese2, e3, e6 ande7 (see
figure 8): these are the points of the Fano plane (figure 10) outside the line (e1, e4, e5). Let
us now determine the cyclese ∈ C that contain a given edgea ∈ E in the general case.
Let χa(e) be the functionC → {−1,+1} defined byχa(e) = −1 if cycle e contains edgea
andχa(e) = 1 otherwise. The functionχa is a character (in this paper the word ‘character’
will mean irreducible character) of the Abelian groupC:

χa(e + e′) = χa(e)χa(e′) for e, e′ ∈ C. (5)

The characters ofC are associated to the hyperplanes of PG(n∗, 2): χa takes the value
−1 on the points outside a hyperplanea∗ and+1 on the points of the hyperplanea∗ and at
0 (in C).

5. The projective space PG(n, 2) of momenta

In the duality of projective spaces, the preceding hyperplanea∗ of PG(n∗, 2) is identified
with a point a of PG(n, 2). Figure 2 represents PG(2, 2) for the 6-j . The pointλµν of
PG(2, 2) corresponds to the line of PG(2∗, 2) given by equationλx + µy + νz = 0 for the
points xyz in PG(2∗, 2). Six points of PG(2, 2) are labelled by the momenta of the 6-j

which are thusembeddedin PG(2, 2). For example point 011 of PG(2, 2), corresponding
to line (e1, e4, e5) of equationy + z = 0 of PG(2∗, 2) is labelled withj1. Figures 2 and 10
have been drawn so as to make their duality apparent.
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Figure 10. The Fano plane of co-momenta PG(2∗, 2). Figure 11. The Fano plane PG(2, 2) of momenta for
the 6-j ′.

For the 6-j ′, we have labelled the cycles in figure 9 so that the projective space PG(2∗, 2)
is the same as for the 6-j (figure 10). In the labelling of PG(2, 2) by the momenta of the
6-j ′ that results (figure 11), only five of the seven points are labelled with momenta,j3 and
j6 labelling the same point (corresponding to the fact that the 6-j ′ is 0 unlessj3 = j6).

When an edgea of an angular momentum graphG is an isthmus, meaning that one
part of the graph can be removed by cutting this edge, the corresponding 3n-j is 0 unless
momentuma = 0. Since an isthmus is not contained in any cycle ofG, the corresponding
momentum is not embedded in PG(n, 2).

We remark that a coupling of angular momenta is represented by a line of PG(2, 2). For
example (j2, j4, j6) form a line. This property generalizes to PG(n, 2). Indeed, let (a, b, c)
be three edges coupled in the 3n-j coefficient. In each cycle there is an even number of
these edges, so that the corresponding characters are linked by

χa(e)χb(e)χc(e) = 1 ∀ e ∈ PG(n∗, 2) (6)

implying that the hyperplanesa∗, b∗, c∗ associated to the characters have an(n−2)-subspace
in common. In the dual space PG(n, 2) this means that the corresponding points (a, b, c)
are collinear.

6. The co-momenta

The combinatorial formula of the 3n-j coefficient is based on its non-zero cycles (Labarthe
[8], where the non-zero cycles are calledclosed diagrams). To each non-zero cycleei is
associated a signεi = ±1 computed by the following rules:
• orient all circuits ofei in an arbitrary fashion.
• multiply the factors:
—at each vertex ofei , a factor of+1 if the cyclic order of the edges is (incoming edge,

outgoing edge, third edge) and−1 otherwise (figure 12).
—on each edge ofei , a factor of+1 if the directions of the edge and cycle are opposite

or −1 if they are the same (figure 13).
—a factor−1 for each circuit.
Note that the value ofεi is independent of the orientation chosen for the circuits.

Examples: for theθ coefficient (figure 4)εi = −1 for the three non-zero cycles; for the 6-j
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and 6-j ′ coefficients (figures 5 and 7)εi = 1 for all non-zero cycles.
To each set of values of momenta in a 3n-j we associate an arrayx of these 3n values.

For example, we associate the 1× 3 arrayx = [ j1 j2 j3 ] to θj1j2j3 and the 2× 3 array

x =
[
j1 j2 j3

j4 j5 j6

]
to the 6-j

{
j1 j2 j3

j4 j5 j6

}
. We denote byR the space of arrays like

these when the entries are integers or half-integers that satisfy the triangular conditions of
the 3n-j , with {x} the value of the 3n-j associated to arrayx ∈ R andN = {0, 1, 2, . . .}
the set of non-negative integers.

For arrays inR, we have the usual addition and multiplication by a scalarλ ∈ N.
For example, in the case of theθ , if x = [ j1 j2 j3 ] and x ′ = [ j ′1 j ′2 j ′3 ] we have
x + x ′ = [ j1+ j ′1 j2+ j ′2 j3+ j ′3 ] and λx = [ λj1 λj2 λj3 ]. It is easy to see that if
x, x ′ ∈ R andλ ∈ N thenx+x ′ ∈ R, λx ∈ R (R is closed under addition and multiplication
by a non-negative integer scalar).

To each non-zero cycleei we associate an array inR corresponding to momenta of1
2

on the edges ofei and zero for the remaining edges. To simplify notations, these elements
of R are denoted by the same name as the cycles. They are for the 6-j :

e1 =
[

0 1
2

1
2

0 1
2

1
2

]
e2 =

[ 1
2 0 1

2
1
2 0 1

2

]
e3 =

[ 1
2

1
2 0

1
2

1
2 0

]
e4 =

[
0 0 0
1
2

1
2

1
2

]
e5 =

[
0 1

2
1
2

1
2 0 0

]
e6 =

[ 1
2 0 1

2

0 1
2 0

]
e7 =

[ 1
2

1
2 0

0 0 1
2

]
.

(7)

Each elementx ∈ R can be decomposed over thesepn arraysei ∈ R (i = 1, 2, . . . , pn) as

x =
pn∑
i=1

liei li ∈ N. (8)

We call li theco-momentumat pointei of PG(n∗, 2). Since the arraysei are not independent
in R, decomposition (8) is not unique in general, but the number of different decompositions
is always finite because the co-momenta have to be non-negative integers.

The normalizing factorN of the 3n-j coefficient is the product of the triangle factors
of the 2n couplings (a, b, c):

N =
∏
(a,b,c)

1abc (9)
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1abc =
(
(a + b − c)!(b + c − a)!(c + a − b)!

(a + b + c + 1)!

)1/2

. (10)

The value of the 3n-j coefficient is expressed as:

{x} = N
∑( pn∏

i=1

(−εi)li
)
(|l| + 1)!∏pn

i=1 li !
(11)

where the sum is over the decompositions (8) ofx in co-momenta and where|l| =∑pn
i=1 li .

For a given set of co-momenta, equation (8) gives the momenta ofx. For example, for
the 6-j we have using equation (7):

j1 = (l2+ l3+ l6+ l7)/2
j2 = (l1+ l3+ l5+ l7)/2
j3 = (l1+ l2+ l5+ l6)/2
j4 = (l2+ l3+ l4+ l5)/2
j5 = (l1+ l3+ l4+ l6)/2
j6 = (l1+ l2+ l4+ l7)/2.

(12)

We see, more generally, that the momentumjk associated to pointk of PG(n, 2) is half the
sum of the co-momenta at points in PG(n∗, 2) outside the hyperplane dual tok, or in terms
of characters:

jk = 1
2

∑
χk(i)=−1

li for k = 1, 2, . . . , pn. (13)

Let us mention that equations similar to equation (13) occur with different quantities and
different meanings in Conway (assisted by Fung) [17], where PG(2, 2) and its dual are used
in the geometric classification of the three-dimensional lattices in terms of their Voronoı̈
cells, and in Fairlie and Ueno [18, equations (10) and (11)], where PG(n, 2) is associated
with integrable top equations. We have extended equation (13) to define momenta at all
points of PG(n, 2), even those that were not momenta in the 3n-j coefficient. So for the
6-j , we have added momentumj7 at point 111 of figure 2 with value

j7 = (l4+ l5+ l6+ l7)/2. (14)

This momentumj7 satisfies the triangular relations corresponding to lines in PG(2, 2):
the sets (j1, j4, j7), (j2, j5, j7) and (j3, j6, j7) are triangular if the co-momenta are non-
negative integers. This property remains true in the general setting of PG(n, 2). Let (a, b, c)
be a triplet of momenta on lined in PG(n, 2). Since the corresponding dual hyperplanes
a∗, b∗, c∗, which have the(n− 2)-subspaced∗ in common, cover all PG(n∗, 2), we have,
using equation (13),

a + b − c =
∑

li (15)

where the sum is over the points ofc∗ not in d∗. This shows thata + b − c ∈ N, and
similarly b + c − a ∈ N and c + a − b ∈ N, meaning that the set (a, b, c) is triangular, if
the co-momenta are non-negative integers.

Introducing

l0 = −
pn∑
i=1

li = −|l| j0 = 0 (16)
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and denoting the character with constant value 1 onC by χ0, we can rewrite equation (13)
as

jk = − 1
4

pn∑
i=0

χk(i)li for k = 0, 1, 2, . . . , pn. (17)

This means that the momenta are discrete Fourier transforms of the co-momenta, so that
the inverse Fourier transform of equation (13) is

li = − 1

2n−1

pn∑
k=1

χk(i)jk for i = 1, 2, . . . , pn (18)

with, for the sum of co-momenta,

|l| = 1

2n−1

pn∑
k=1

jk. (19)

For example, for the 6-j , the inverse of equations (12) and (14) is

l1 = (−j1+ j2+ j3− j4+ j5+ j6− j7)/2

l2 = (+j1− j2+ j3+ j4− j5+ j6− j7)/2

l3 = (+j1+ j2− j3+ j4+ j5− j6− j7)/2

l4 = (−j1− j2− j3+ j4+ j5+ j6+ j7)/2

l5 = (−j1+ j2+ j3+ j4− j5− j6+ j7)/2

l6 = (+j1− j2+ j3− j4+ j5− j6+ j7)/2

l7 = (+j1+ j2− j3− j4− j5+ j6+ j7)/2

(20)

with sum

|l| = (+j1+ j2+ j3+ j4+ j5+ j6+ j7)/2. (21)

7. The formula of hidden momenta

We now interpret equation (11) by defining afull pn-J symbol. Let X be an array ofpn
angular momentajk (k = 1, 2, . . . , pn). We associatejk with point k in PG(n, 2) and the
co-momentumli (i = 1, 2, . . . , pn) calculated by equation (18) with pointi in PG(n∗, 2).
The co-momenta are now allowed to take rational values and not only integer values. We
define the value of the fullpn-J symbol 〈X〉 by

〈X〉 = (−)|l|(|l| + 1)!∏pn
i=1 li !

(22)

if the co-momenta are non-negative integers (with 0!= 1) and zero otherwise. Of course,
〈X〉 = 0 if the momenta (a, b, c) on a line of PG(n, 2) are not triangular, but, as we shall
see in the next section, it can happen that some co-momenta are negative or non-integer so
that 〈X〉 = 0 even when all triangular conditions are satisfied. We callvisible momentathe
momenta of the fullpn-J symbol which were originally in the 3n-j coefficient andhidden
momentathose which were not.

Using equation (11), we arrive at our main result,the formula of hidden momenta. The
value of the 3n-j coefficient is given by

{x} = N
∑

(−)t (X)〈X〉 (23)
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where the sum is over the hidden momenta of the fullpn-J symbol and

(−)t (X) =
pn∏
i=1

(εi)
li (24)

is a phase factor.
The formula of hidden momenta interprets the summations in the combinatorial

expression: they have the role of concealing the hidden momenta in the fullpn-J symbol,
so that only the visible momenta remain.

8. Examples and sum rules

In this section we give examples for theθ , 6-j and 9-j coefficients. It will appear that
among the fullpn-J symbol that satisfy all triangular conditions usually a large number
are zero because the co-momenta fail to be non-negative integers. In the formula of hidden
momenta for structurally different 3n-j coefficients with the samen, a visible momentum in
one coefficient can appear as hidden in another. This increases our confidence that hidden
momenta have physical meaning and are not merely summation variables. This also results
in sum rules, equations (28), (34), (57) and (59) below. We have found no reference for
these sum rules which could also be derived from the combinatorial and graphical techniques
in Jucys and Bandzaitis [9, equations (14.3) and (35.4)].

8.1. Theθ coefficient

The θ coefficientθj1j2j3 corresponds to the projective line PG(1, 2). Its co-momenta are the
three numbers involved in the triangular conditions (3); there is no hidden momentum. The
full 3-J symbol of PG(1, 2), denoted〈j1j2j3〉, is

〈j1j2j3〉 = (−)j1+j2+j3

(1j1j2j3)
2

(25)

when triangular conditions (3) are satisfied, and 0 otherwise. Equation (23) contains no
summation:

θj1j2j3 = (1j1j2j3)
2(−)j1+j2+j3〈j1j2j3〉. (26)

The degenerate projective space PG(0, 2), consisting of only one point, can be considered
to correspond to a degenerate 3n-j (for n = 0) with an angular momentum graph formed
of one single loopj and value{j} = 2j + 1. There is one co-momentuml = 2j , and
equations (22)–(24) apply if we put〈j〉 = (−)2j (2j+1) for the full 1-J symbol of PG(0, 2),
ε1 = −1 for the sign of the non-zero cycle andN = 1 for the normalizing factor.

The composite angular momentum graph{j1}{j2} formed of two loopsj1 andj2 appears
as embedded in the line PG(1, 2) with a hidden momentumj3. The formula of hidden
momenta equation (23), which reads

{j1}{j2} =
∑
j3

(−)2j1+2j2〈j1j2j3〉 (27)

can be considered as a sum rule for theθ coefficient:∑
j3

(−)j3−j1−j2θj1j2j3

(1j1j2j3)
2

= {j1}{j2} = (2j1+ 1)(2j2+ 1). (28)

It can be remarked that, in the full 3-J symbol,j3 is a visible momentum in equation (26)
but a hidden momentum in equation (27).
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8.2. The 6-j and 6-j ′ coefficients

Using the same display of momenta as in figure 2, we have for the full 7-J symbol of
PG(2, 2) 〈

j4 j3 j5

j2
j7

j6
j1

〉
= (−)|l|(|l| + 1)!

l1!l2! . . . l7!
(29)

when all co-momenta (equation (20)) are non-negative integers, and 0 otherwise. The
formula of hidden momenta equation (23) is for the 6-j{

j1 j2 j3

j4 j5 j6

}
= 1j1j2j31j1j5j61j2j4j61j3j4j5

∑
j7

〈
j4 j3 j5

j2
j7

j6
j1

〉
(30)

where the summation over the hidden momentumj7 is limited by the triangular conditions
j1j4j7, j2j5j7 and j3j6j7. Moreover, from the form of equation (20), only values ofj7

varying with step of 2 will correspond to integer co-momenta and contribute to the sum.
Equation (30) is equivalent to the combinatorial formula of Racah [19, equation (36)] which
reads, when transcribed in our notations,{
j1 j2 j3

j4 j5 j6

}
= 1j1j2j31j1j5j61j2j4j61j3j4j5

∑
z

1

(j1+ j2− j3− z)!(j4+ j5− j3− z)!

× (−)j1+j2+j4+j5−z(j1+ j2+ j4+ j5− z+ 1)!

(j1+ j5− j6− z)!(j2+ j4− j6− z)!z!(j3+ j6− j1− j4+ z)!(j3+ j6− j2− j5+ z)!
(31)

where z runs over integer values such that all factorials have non-negative arguments.
Indeed, equation (31) becomes algebraically identical to equation (30) when the sum over
z is changed to a sum overj7 by identifying z with co-momentuml3, that is by putting

z = (j1+ j2− j3+ j4+ j5− j6− j7)/2. (32)

The formula of hidden momenta gives thus an entirely new perspective on Racah formula,
revealing that it is not merely a combinatorial expression.

The formula of hidden momenta for the 6-j ′ (with two momenta equal toj6) is{
j1 j2 j6

j4 j5 j6

}′
= (1j1j5j61j2j4j6)

2
∑
j3,j7

〈
j4 j3 j5

j2
j7

j6
j1

〉
. (33)

Comparing equations (30), (33) and (4), we get the sum rule:∑
j3

1

1j1j2j31j3j4j5

{
j1 j2 j3

j4 j5 j6

}
= 1

1j1j5j61j2j4j6

{
j1 j2 j6

j4 j5 j6

}′
= (−)j1+j2+j4+j5θj1j5j6θj2j4j6

(2j6+ 1)1j1j5j61j2j4j6

. (34)

Let us now examine the fact that, even when the hidden momenta satisfy all triangular
conditions, the co-momenta are not necessarily non-negative integers. The 66 sets of values
of hidden momentaj3, j7 of the 6-j ′{

j1 j2 j6

j4 j5 j6

}′
=
{

5 9
2 4

13
2 6 4

}′
(35)

which satisfy the triangular conditions are displayed in figure 14. The full 7-J symbol is
different from zero only for the 24 sets of values indicated by full circles ‘•’.
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j3

j7

1/2 5/2 9/2 13/2 17/2

7/2

11/2

15/2

3/2

19/2

j7 -j 3 = 3

j7 -j 3 = -1

j7 +j 3 = 18

j7 +j 3 = 4

Figure 14. The values of hidden momentaj3, j7 of the 6-j ′ coefficient. Values satisfying
triangular conditions are represented: the full circles• correspond to non-negative integer co-
momenta, the open circles◦ to integer co-momenta some of which are negative and small dots
‘ ·’ to non-integer co-momenta. The rectangle corresponds to non-negative co-momenta.

Let j (0)3 ,j (0)7 be a particular set of hidden momenta that correspond to integer co-momenta
and put

j3 = j (0)3 + x1 j7 = j (0)7 + x2. (36)

We see from triangular conditions that theshift vector(x1, x2) has integer components and
from equation (20) that shift vectors corresponding to integer co-momenta form the square
lattice defined by:

{(x1, x2): x1 andx2 are both even integers or

x1 andx2 are both odd integers}. (37)

An example ofgenerator matrix(see Conway and Sloane [20]) for the lattice isM = (1 −1
−1 1

)
.

The two row-vectors ofM form a basis of the square lattice and the shift vectors are given
by (x1, x2) = zM wherez = (z1, z2) is a vector with integer components. In figure 14 this
lattice (after a shift of origin) is represented by full or open circles.

Finally, let us determine on what condition the co-momenta are all non-negative. From
equation (20), this is

|j1− j2− j4+ j5| + j6 6 j7+ j3 6 j1+ j2+ j4+ j5− j6

|j1+ j2− j4− j5| − j6 6 j7− j3 6 −|j1− j2+ j4− j5| + j6
(38)

meaning that the hidden momenta belong to the rectangle in figure 14.
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Table 1. Description of the projective geometryP = PG(3, 2) of the 9-j coefficient.

j6 j8 r1 j5 j4 j2 q3 j9 j3 j7 q2 q1 r3 r2 j1

ε 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

l1 0001 − 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
l2 0010 − 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
l3 0011 + 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
l4 0100 − 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
l5 0101 − 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
l6 0110 − 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
l7 0111 − 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
l8 1000 − 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
l9 1001 − 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
l10 1010 − 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
l11 1011 − 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
l12 1100 − 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
l13 1101 + 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
l14 1110 + 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
l15 1111 − 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

8.3. The 9-j coefficient

The description of the projective geometryP = PG(3, 2) (and its dualP∗ = PG(3∗, 2))
of the 9-j coefficient is summarized in table 1. The rows (resp. columns) of the table are
associated with points ofP∗ (resp.P). The entryaik in row i = xyzt and columnk = λµνρ
has valueλx + µy + νz+ ρt ∈ F2.

The assignment of momenta (the nine visible momentaj1, j2, . . . , j9 of the 9-j and the
six hidden momentaq1, q2, q3, r1, r2, r3) to points ofP is the same as in figure 3.

The cycles of the 9-j are given by the rows of the table. For example, the first row
represents the point 0001 ofP∗ identified with the cycle (j6, j4, j3, j1) formed of momenta
corresponding to entries of 1 (disregarding the hidden momentar1, q3, q2 andr3).

The hyperplanes (Fano planes) ofP∗ are given by the columns of the table. For example,
the first column represents the pointλµνρ = 0001 ofP and the hyperplane of equation
λx +µy + νz+ ρt = 0 formed of points 0010, 0100, 0110, 1000, 1010, 1100 and 1110 of
P∗ corresponding to zero entries in the table.

Similarly, the hyperplanes ofP are given by the rows of the table. For example, the
points of the shaded hyperplane in figure 3 correspond to the zero entries of row 1000 of
the table.

The characters are given byχk(i) = −1 (resp.χk(i) = 1) when entryaik = 1 (resp.
aik = 0).

The expression of the momenta in terms of co-momenta, equation (13), is read from
the columns of the table. For example, the first column gives

j6 = (l1+ l3+ l5+ l7+ l9+ l11+ l13+ l15)/2 (39)

where each term corresponds to an entry of 1 in the table.
The expression of the co-momenta in terms of momenta, equation (18), is read from

the rows of the table. For example, the first row gives

l1 = (+j6− j8+ r1− j5+ j4− j2+ q3− j9+ j3− j7+ q2− q1+ r3− r2+ j1)/4 (40)

where a+ (resp.−) sign corresponds to an entry of 1 (resp. 0) in the table.
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The sign of the cycles isεi = 1 for the three collinear cycles forming lined =
(0011, 1101, 1110) of P∗ andεi = −1 for the other 12 non-zero cycles. The phase factor
(−)t (X) equation (24) can be expressed in terms of the momenta: the sum of co-momenta
li with εi = −1

t (X) = q1+ q2+ q3 (41)

turns out to be the sum of the momenta on the dual line ofd, a result that can be understood
geometrically by the same method as for equation (15).

8.3.1. The 35 lines. Let us give some geometric properties of the lines ofP. The setH
of the nine pointsj1, j2, . . . , j9 of P is the set of points that satisfy the quadratic equation
λµ = νρ. The figureH representing the 9-j is a hyperboloid. The 35 lines ofP can be
classified with respect toH as follows.
• Six are theinterior lines which are contained inH and correspond to the triangular

conditions of the 9-j (these lines are also considered to betangentsof H):

j1j2j3 j4j5j6 j7j8j9

j1j4j7 j2j5j8 j3j6j9.
(42)

• Nine aretangentsof H that have just one point in common withH:

j1q1r1 j2q2r3 j3q3r2

j4q2r2 j5q3r1 j6q1r3

j7q3r3 j8q1r2 j9q2r1.

(43)

• 18 are thesecantsof H, having exactly two points in common withH:

j2j7q1 j1j5q2 j1j9q3 j2j4r1 j1j6r2 j1j8r3

j3j4q1 j3j8q2 j2j6q3 j3j7r1 j2j9r2 j3j5r3

j5j9q1 j6j7q2 j4j8q3 j6j8r1 j5j7r2 j4j9r3.

(44)

• Two are theexterior lines ofH, having no point in common withH:

q1q2q3 r1r2r3. (45)

Through each point ofH there are three tangents (among which two interior lines) and
four secants. Thetangent spaceat a point ofH is the Fano plane containing the tangents
through that point. For example, the shaded hyperplane in figure 3 is the tangent space at
point j5.

Through each point ofP \ H there are three secants, three tangents and one exterior
line.

8.3.2. The formula of hidden momenta for the 9-j . We have, for the full 15-J symbol,〈
j1 j2 j3

j4 j5 j6

j7 j8 j9

q1 q2 q3

r1 r2 r3

〉
= (−)|l|(|l| + 1)!

l1!l2! . . . l15!
(46)

when all co-momenta (given by equations like equation (40)) are non-negative integers, and
0 otherwise.

The formula of hidden momenta for the 9-j coefficient is the six-fold summation
formula: {

j1 j2 j3

j4 j5 j6

j7 j8 j9

}
= N

∑
q1q2q3
r1r2r3

(−)q1+q2+q3

〈
j1 j2 j3

j4 j5 j6

j7 j8 j9

q1 q2 q3

r1 r2 r3

〉
(47)
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with the normalizing factor

N = 1j1j2j31j4j5j61j7j8j91j1j4j71j2j5j81j3j6j9 (48)

and summation limited to hidden momenta satisfying the 29 triangular conditions in
equations (43)–(45). In this formula we have used equation (41) in the expression of
the phase factor, but, since the co-momenta have to be integers, we can replace(−)q1+q2+q3

by equivalent forms, such as(−)t ′(X) with

t ′(X) = q1+ q2+ q3− 2l1+ 2l13 = j2− j3− j4+ j5+ j7+ j9+ q1. (49)

As in the case of the 6-j ′, there are hidden momenta that correspond to non-integer co-
momenta, even when all triangular conditions equations (43)–(45) are satisfied. We define
as before the shift vector(x1, x2, . . . , x6) with integer components by

q1 = q(0)1 + x1 q2 = q(0)2 + x2 q3 = q(0)3 + x3

r1 = r(0)1 + x4 r2 = r(0)2 + x5 r3 = r(0)3 + x6

(50)

whereq(0)1 , . . . , r
(0)
3 is a set of hidden momenta that corresponds to integer co-momenta.

Shift vectors corresponding to integer co-momenta form the latticeD+6 defined by:{
(x1, x2, . . . , x6): all xi even integers or allxi odd integers,

6∑
i=1

xi ≡ 0 (mod 4)

}
. (51)

An example of generator matrix for the lattice is

M =


2 2 2 2 2 2
−1 1 1 1 1 1
1 −1 1 1 1 1
1 1 −1 1 1 1
1 1 1 −1 1 1
1 1 1 1 −1 1

 . (52)

The shift vectors are given by(x1, x2, . . . , x6) = zM wherez = (z1, z2, . . . , z6) is a vector
with integer components. A fundamental cell of the lattice, containing only one shift
vector, has volume detM = 64. It results that usually in equation (47) a large fraction
of the summed terms are zero because the corresponding co-momenta are non-integers.
The hidden momenta are further limited to the polytope in six dimensions (generalizing
the rectangle in figure 14) defined byli > 0 (i = 1, 2, . . . ,15). For example, for the 9-j

coefficient

{ 3 4 5
6 7 8
9 10 11

}
there are 25 564 sets of hidden momenta that satisfy all triangular

conditions, 426 of which correspond to integer co-momenta. Moreover, among these 426
sets only eight sets correspond to non-negative co-momenta and so to non-zero terms in the
summation of equation (47).

Various six-fold summation formulae for the 9-j have been given by Wu [21]. They are
based on a generating function for the 9-j , first obtained by Schwinger [22] in a creation and
annihilation operator approach, and then rederived by Wu using a formalism from Bargmann
[23]. The combinatorial formula equation (11) of the 3n-j coefficient used in this paper
derives from a generating function which for the 9-j is the same as that of Schwinger. It
results that these various six-fold summation formulae are equivalent to equation (47) in the
sense that the non-zero terms that are summed are the same in all formulae. Here again,
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+
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+

j7

q1

j2 j4
j3

j6j8

j9

j5

Figure 15. The 9-j ′ coefficient.

as in the case of Racah formula, the formula of hidden momenta adds physical meaning to
these combinatorial expressions.

8.3.3. The 9-j coefficient of the second kind.The 9-j ′ coefficient(9-j coefficient of the
second kind) defined by figure 15 is a product of two 6-j coefficients:{

q1 j2 j3

j4 j5 j6

j7 j8 j9

}′
=
{
j2 j7 q1

j9 j5 j8

}{
j3 j4 q1

j5 j9 j6

}
. (53)

We have labelled the momenta so that this 9-j ′ is embedded inP as in figure 3 and table 1,
but now the visible momenta areq1, j2, j3, . . . , j9 and the hidden momenta arej1, q2, q3,
r1, r2, r3, so that momentaj1 andq1 have swapped the visible/hidden attributes they had in
the 9-j . The full 15-J symbol is still given by equation (46) and the cycles by table 1. For
example, point 0001 ofP∗ is associated with cycle (j6, j4, j3). The signs of the cycles are
now εi = 1 for the three collinear cyclesi = 0001, 0010, 0011 andεi = −1 for the other
12 non-zero cycles. The phase factor(−)t (X) is independent of the hidden momenta:

t (X) = q1+ j5+ j9. (54)

The formula of hidden momenta for the 9-j ′ coefficient is the six-fold summation
formula: {

q1 j2 j3

j4 j5 j6

j7 j8 j9

}′
= N ′(−)q1+j5+j9

∑
j1q2q3
r1r2r3

〈
j1 j2 j3

j4 j5 j6

j7 j8 j9

q1 q2 q3

r1 r2 r3

〉
(55)

with the normalizing factor

N ′ = 1j2j7q11j3j4q11j2j5j81j3j6j91j4j5j61j7j8j9. (56)

Comparing with equation (47), used with expression equation (49) instead ofq1+q2+q3

in the phase factor, we get the sum rule:∑
j1

1

1j1j2j31j1j4j7

{
j1 j2 j3

j4 j5 j6

j7 j8 j9

}
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j1

j5

a

j4

j2
B

j1

j5

b

j4

j2
B

Figure 16. The graphGa of the 3n-j coefficient{U, a}. Figure 17. The graphGb of the 3n-j coefficient{U, b}.

= (−)j2−j3−j4+j7
∑
q1

1

1j2j7q11j3j4q1

{
j2 j7 q1

j9 j5 j8

}{
j3 j4 q1

j5 j9 j6

}
. (57)

8.4. A sum rule

The sum rules, equations (28), (34) and (57), can be generalized to a sum rule relating the
3n-j coefficients depicted in figures 16 and 17. The graphsGa andGb have an identical
part (boxB and edgesj5, j1, j2, j4) excepted that orientations of edgej5 are opposite.
They generalize figures 5 and 7 by replacing edgej6 and its two adjacent vertices by box
B and renamingj3 asa or b. We denote the 3n-j by {U, a} and{U, b} whereU is the set
of common angular momenta. Both 3n-j can be embedded in the same projective space
PG(n, 2). Let us first suppose that no two momenta are associated to the same point of
PG(n, 2). We have then a fullpn-J symbol 〈U, a, b,H 〉 where visible momentuma of
{U, a} also appears as a hidden momentum of{U, b} and where we denote byH the set of
the common hidden momenta.

The cycles of the two graphs are completely defined by their edges onU . It is easily
checked that the sign of a cycle ofGa is the same as the sign of the cycle ofGb that has
the same edges onU . (Some of the cases to be considered occur in figures 8 and 9, where
cyclesei (i = 1, . . . ,7) with the samei have the same edges onU = {j1, j2, j4, j5, j6}.)
The 3n-j are thus given by the formula of hidden momenta as

{U, a} = 1aj1j21aj4j5NB
∑
H,b

(−)t 〈U, a, b,H 〉

{U, b} = 1bj1j51bj2j4NB
∑
H,a

(−)t 〈U, a, b,H 〉
(58)

with the same phase factor and whereNB is a product of common triangle factors. From
these equations we obtain the sum rule relating the 3n-j coefficients in figures 16 and 17:∑

a

1

1aj1j21aj4j5

{U, a} =
∑
b

1

1bj1j51bj2j4

{U, b}. (59)

This sum rule remains valid when momentumb is associated to the same point of PG(n, 2)
as another momentum (as in figure 11): the sum onb is then reduced to one term only as
in equation (34).

9. Concluding remarks

The full pn-J symbol (22) is highly symmetric. It is invariant in thepn! permutations
of the co-momenta. In the space of momenta, these symmetries form a group of linear
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transformations. A subgroup of these symmetries consists of the collineations, which
permute points and lines, both in PG(n, 2) and its dual, thus conserving the set of values of
the momenta as well as the set of their triangular relations.

For the 6-j , among the 7!= 5040 symmetries, 144 leavej7 fixed at the same point
in PG(2, 2): these are the Regge [24] symmetries of the 6-j . Among these, 6× 4 are
collineations that correspond to the 24 geometric symmetries of the tetrahedron (figure 5).

We give a state model interpretation of the fullpn-J symbol (22) and of the co-momenta
inspired by the chromatic method of evaluating Penrose spin networks (see Penrose [25],
Moussouris [26] and Kauffman [27]). Let us consider a system of|l| identical objects that
are partitioned inpn boxes, boxi containingli objects (i = 1, 2, . . . , pn). The co-momenta
li thus appear as occupation numbers. We have availablec > |l| colours to paint the objects.
We call astateof the system a colouring of the|l| objects such that no two objects have
the same colour. The number of states of this system is

P(X, c) = c(c − 1) . . . (c − |l| + 1)∏pn
i=1 li !

. (60)

Considered in terms of variablec for given X, equation (60) defines a polynomial that
takes integer values whenc is a positive or negative integer. Evaluating the polynomial
at c = −2, which corresponds to the ‘number of colours’ of spin networks, yields the full
pn-J symbol (22).

For θ , 6-j and 9-j coefficients, the chromatic method of evaluating spin networks,
based oncircuit decompositions gives a formula similar to equation (11), based oncycle
decompositions. The two formulae differ for the other 3n-j coefficients, when a cycle can
be composed of several circuits as in figure 9. Instead of the simple expression (60) for a
cycle configuration, the chromatic polynomial for a circuit configuration has a more complex
expression. This becomes important when one considers the generalization of the 3n-j to
quantum groupq-3n-j coefficients. The principle of replacing factorialsk! by quantum
integer factorials [k]! is useful for guessing the quantum formula of theq-3n-j . Kauffman
and Lins [28, pp 91–2] pointed out that the quantization of the chromatic polynomial to
higherq-3n-j was not clear. With our method of cycle decompositions, equation (22) has
the same structure for all 3n-j , so that we have a way to quantize the general formula of
the 3n-j .

Let us rewrite diagram (1) as

co-momentum
object

duality←→

angular-momentum
object

hidden part of
angular-momentum

object

(61)

We have seen the validity of such a diagram when the angular-momentum object is a 3n-j .
When the angular-momentum object is a spin-j elementary particle state|jm〉, it makes
sense to suppose that there is no hidden part and that the co-momenta areλ = j + m,
µ = j − m, usually interpreted as occupation numbers of two-oscillator states|λµ〉. We
can imagine that, for a system of elementary particles, the hidden part of diagram (61)
appears after couplings and recouplings of the single-particle states. The formula in
Racah [19, equation (16)] for the 3-j coefficient (Clebsch–Gordan) can be interpreted as
a summation over a hidden projection angular momentum, but we have not yet obtained
a clear interpretation for the general angular momentum graph with free edges (projection
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angular momenta). Another open question is what these hidden structures are, if they exist,
for atomic and nuclear shells and their matrix elements.
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